Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068684

RESUMO

This study investigated novel quantitative traits loci (QTLs) associated with the control of grain shape and size as well as grain weight in rice. We employed a joint-strategy multiple GAPIT (Genome Association and Prediction Integrated Tool) models [(Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK)), Fixed and random model Circulating Probability Uniform (FarmCPU), Settlement of MLM Under Progressive Exclusive Relationship (SUPER), and General Linear Model (GLM)]-High-Density SNP Chip DNA Markers (60,461) to conduct a Genome-Wide Association Study (GWAS). GWAS was performed using genotype and grain-related phenotypes of 143 recombinant inbred lines (RILs). Data show that parental lines (Ilpum and Tung Tin Wan Hein 1, TTWH1, Oryza sativa L., ssp. japonica and indica, respectively) exhibited divergent phenotypes for all analyzed grain traits), which was reflected in their derived population. GWAS results revealed the association between seven SNP Chip makers and QTLs for grain length, co-detected by all GAPIT models on chromosomes (Chr) 1-3, 5, 7, and 11, were qGL1-1BFSG (AX-95918134, Chr1: 3,820,526 bp) explains 65.2-72.5% of the phenotypic variance explained (PVE). In addition, qGW1-1BFSG (AX-273945773, Chr1: 5,623,288 bp) for grain width explains 15.5-18.9% of PVE. Furthermore, BLINK or FarmCPU identified three QTLs for grain thickness independently, and explain 74.9% (qGT1Blink, AX-279261704, Chr1: 18,023,142 bp) and 54.9% (qGT2-1Farm, AX-154787777, Chr2: 2,118,477 bp) of the observed PVE. For the grain length-to-width ratio (LWR), the qLWR2BFSG (AX-274833045, Chr2: 10,000,097 bp) explains nearly 15.2-32% of the observed PVE. Likewise, the major QTL for thousand-grain weight (TGW) was detected on Chr6 (qTGW6BFSG, AX-115737727, 28,484,619 bp) and explains 32.8-54% of PVE. The qTGW6BFSG QTL coincides with qGW6-1Blink for grain width and explained 32.8-54% of PVE. Putative candidate genes pooled from major QTLs for each grain trait have interesting annotated functions that require functional studies to elucidate their function in the control of grain size, shape, or weight in rice. Genome selection analysis proposed makers useful for downstream marker-assisted selection based on genetic merit of RILs.

2.
J Agric Food Chem ; 71(32): 12357-12367, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549031

RESUMO

Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.


Assuntos
Oryza , Proteoma , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Sementes/genética , Sementes/metabolismo
3.
Front Plant Sci ; 14: 1231914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636104

RESUMO

'Seolgaeng', an opaque-endosperm rice (Oryza sativa) mutant, is used to prepare high-quality dry-milled rice flour. The mutation causing its opaque-endosperm phenotype was unknown. Map-based cloning identified a missense mutation in the gene FRUCTOSE-6-PHOSPHATE 2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE 2 (OsF2KP2) in Seolgaeng. Transfer DNA insertion and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced f2kp2 mutants exhibited opaque endosperm. Rice harbors another F2KP gene, OsF2KP1. CRISPR/Cas9-induced double mutants of OsF2KP1 and OsF2KP2 (f2kp-d) possessed more opaque endosperm compared to f2kp2 single mutants, whereas the endosperm of the f2kp1 single mutant was normal. Grain hardness and damaged starch content were significantly reduced in f2kp2 mutants compared to the wild type and f2kp1. Amylose content was lower than normal in f2kp2 mutants but not f2kp1. Grain hardness and amylose content were much lower in f2kp-d than in f2kp2. Starch polymerization analysis revealed altered amylopectin structure in f2kp2 and f2kp-d mutants. F2KP activity was lower in f2kp2 and much lower in the double mutants when compared to the wild types, but f2kp1 showed no significant difference. In coleoptiles, hypoxia induced OsF2KP2 expression but downregulated OsF2KP1. These results suggest that OsF2KP2 functions as the main F2KP isoform in endosperm experiencing hypoxia, but OsF2KP1 may partially compensate for the absence of OsF2KP2. We propose that F2KP has a crucial role in inorganic pyrophosphate-utilizing energy metabolism for starch biosynthesis in rice endosperm.

4.
Foods ; 12(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37048338

RESUMO

Ice cream consumption has increased over the years. In this study, we investigated the potential of using rice varieties with varying amylose contents for ice cream production. We analyzed the physical and chemical properties and sensory quality characteristics (appearance, taste, texture, chewiness, aroma, and rice flavor) of rice-based ice cream made from five varieties with low and high amylose levels. To make the ice cream, we ground rice into a fine powder and combined it with skim milk powder, butter, sugar, glycerin esters of fatty acids, locust bean gum, and water to form a gelatinized mixture. This mixture was then aged, frozen, and hardened. The ice cream's key quality characteristics, such as viscosity (2170-25,030 cP), hardness (4.27-49.55 N cm-2), and overrun (17.95-46.99%), showed a wide range. Ice cream made from Saemimyeon (high amylose content rice variety) exhibited the highest hardness value (49.55 N cm-2) among the varieties tested, but had relatively low viscosity (4030 cP), overrun (17.95%), and drip-through (0.75 g/min) values. These findings suggest that rice varieties with different amylose contents are suitable for making ice cream and have the potential to expand the rice processing market and increase its value.

5.
Front Plant Sci ; 13: 968795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991424

RESUMO

Four near-isogenic lines (NILs) with different allele combinations of the starch branching enzyme 3 (SBE3) and granule-bound starch synthase 1 (GBSS1) were developed by crossing the japonica rice cultivars "Dodamssal" and "Hwayeong." The associations between sequence variations in SBE3 and GBSS1, and starch-related traits were investigated. These sequence variations led to changes in seed morphology, starch structure, starch crystallinity, amylopectin chain length distribution, digestibility, apparent amylose content (AAC), and resistant starch content (RS). SBE3 and GBSS1 showed genetic interaction in regulating AAC and RS. Gene expression profiling of panicle tissues revealed significant differences in expression levels of GBSS1, SBE3, and other starch-related genes among the four NILs, indicating that variations in GBSS1 and SBE3 changed the expression level of starch-related genes. These variations contributed to the changes observed in AAC, RS, and physico-chemical characteristics of the rice starch from the NILs.

6.
Life (Basel) ; 12(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013451

RESUMO

Nitrogen (N) is a gas and the fifth most abundant element naturally found in the atmosphere. N's role in agriculture and plant metabolism has been widely investigated for decades, and extensive information regarding this subject is available. However, the advent of sequencing technology and the advances in plant biotechnology, coupled with the growing interest in functional genomics-related studies and the various environmental challenges, have paved novel paths to rediscovering the fundamentals of N and its dynamics in physiological and biological processes, as well as biochemical reactions under both normal and stress conditions. This work provides a comprehensive review on multiple facets of N and N-containing compounds in plants disseminated in the literature to better appreciate N in its multiple dimensions. Here, some of the ancient but fundamental aspects of N are revived and the advances in our understanding of N in the metabolism of plants is portrayed. It is established that N is indispensable for achieving high plant productivity and fitness. However, the use of N-rich fertilizers in relatively higher amounts negatively affects the environment. Therefore, a paradigm shift is important to shape to the future use of N-rich fertilizers in crop production and their contribution to the current global greenhouse gases (GHGs) budget would help tackle current global environmental challenges toward a sustainable agriculture.

7.
Food Sci Biotechnol ; 31(6): 681-690, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35646411

RESUMO

The National Institute of Crop Science, Rural Development Administration (RDA) of Korea is presently developing new rice varieties suitable for producing Western rice-based foods, such as risotto, a well-known Italian-style product. The study considered different milled rice from five Tongil-type and six Japonica-type varieties. Besides the biometric properties, cooking behaviour, starch properties, and in vitro digestibility of Korean rice samples were compared with those of the 'Carnaroli' Italian variety. The physicochemical traits of the Korean varieties extended over a vast range; the amylose content stood out (from 13.0 to 41.7%), influencing the hardness and stickiness of cooked samples, and their starch digestibility. Although none of the Korean varieties seemed to guarantee cooking performances for risotto similar to the 'Carnaroli' one, 'Saemimyeon' and 'Shingil' cvs were judged the best for this purpose up-to-now.

8.
Plants (Basel) ; 11(6)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336670

RESUMO

In rice, high radial oxygen loss (ROL) has been associated with the reduction in the activity of methanogens, therefore reducing the formation of methane (CH4) due to the abundance in application of nitrogen (N)-rich fertilizers. In this study, we evaluated the root growth behavior and ROL rate of a doubled haploid (DH) population (n = 117) and parental lines 93-11 (P1, indica) and Milyang352 (P2, japonica) in response to iron (II) sulfide (FeS). In addition, we performed a linkage mapping and quantitative trait locus (QTL) analysis on the same population for the target traits. The results of the phenotypic evaluation revealed that parental lines had distinctive root growth and ROL patterns, with 93-11 (indica) and Milyang352 (japonica) showing low and high ROL rates, respectively. This was also reflected in their derived population, indicating that 93.2% of the DH lines exhibited a high ROL rate and about 6.8% had a low ROL pattern. Furthermore, the QTL and linkage map analysis detected two QTLs associated with the control of ROL and root area on chromosomes 2 (qROL-2-1, 127 cM, logarithm of the odds (LOD) 3.04, phenotypic variation explained (PVE) 11.61%) and 8 (qRA-8-1, 97 cM, LOD 4.394, PVE 15.95%), respectively. The positive additive effect (2.532) of qROL-2-1 indicates that the allele from 93-11 contributed to the observed phenotypic variation for ROL. The breakthrough is that the qROL-2-1 harbors genes proposed to be involved in stress signaling, defense response mechanisms, and transcriptional regulation, among others. The qPCR results revealed that the majority of genes harbored by the qROL-2-1 recorded a higher transcript accumulation level in Milyang352 over time compared to 93-11. Another set of genes exhibited a high transcript abundance in P1 compared to P2, while a few were differentially regulated between both parents. Therefore, OsTCP7 and OsMYB21, OsARF8 genes encoding transcription factors (TFs), coupled with OsTRX, OsWBC8, and OsLRR2 are suggested to play important roles in the positive regulation of ROL in rice. However, the recorded differential expression of OsDEF7 and OsEXPA, and the decrease in OsNIP2, Oscb5, and OsPLIM2a TF expression between parental lines proposes them as being involved in the control of oxygen flux level in rice roots.

9.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639042

RESUMO

The green rice leafhopper (GRH, Nephotettix cincticeps Uhler) is one of the most important insect pests causing serious damage to rice production and yield loss in East Asia. Prior to performing RNA-Seq analysis, we conducted an electrical penetration graph (EPG) test to investigate the feeding behavior of GRH on Ilpum (recurrent parent, GRH-susceptible cultivar), a near-isogenic line (NIL carrying Grh1) compared to the Grh1 donor parent (Shingwang). Then, we conducted a transcriptome-wide analysis of GRH-responsive genes in Ilpum and NIL, which was followed by the validation of RNA-Seq data by qPCR. On the one hand, EPG results showed differential feeding behaviors of GRH between Ilpum and NIL. The phloem-like feeding pattern was detected in Ilpum, whereas the EPG test indicated a xylem-like feeding habit of GRH on NIL. In addition, we observed a high death rate of GRH on NIL (92%) compared to Ilpum (28%) 72 h post infestation, attributed to GRH failure to suck the phloem sap of NIL. On the other hand, RNA-Seq data revealed that Ilpum and NIL GRH-treated plants generated 1,766,347 and 3,676,765 counts per million mapped (CPM) reads, respectively. The alignment of reads indicated that more than 75% of reads were mapped to the reference genome, and 8859 genes and 15,815,400 transcripts were obtained. Of this number, 3424 differentially expressed genes (DEGs, 1605 upregulated in Ilpum and downregulated in NIL; 1819 genes upregulated in NIL and downregulated in Ilpum) were identified. According to the quantile normalization of the fragments per kilobase of transcript per million mapped reads (FPKM) values, followed by the Student's t-test (p < 0.05), we identified 3283 DEGs in Ilpum (1935 upregulated and 1348 downregulated) and 2599 DEGs in NIL (1621 upregulated and 978 downregulated) with at least a log2 (logarithm base 2) twofold change (Log2FC ≥2) in the expression level upon GRH infestation. Upregulated genes in NIL exceeded by 13.3% those recorded in Ilpum. The majority of genes associated with the metabolism of carbohydrates, amino acids, lipids, nucleotides, the activity of coenzymes, the action of phytohormones, protein modification, homeostasis, the transport of solutes, and the uptake of nutrients, among others, were abundantly upregulated in NIL (carrying Grh1). However, a high number of upregulated genes involved in photosynthesis, cellular respiration, secondary metabolism, redox homeostasis, protein biosynthesis, protein translocation, and external stimuli response related genes were found in Ilpum. Therefore, all data suggest that Grh1-mediated resistance against GRH in rice would involve a transcriptome-wide reprogramming, resulting in the activation of bZIP, MYB, NAC, bHLH, WRKY, and GRAS transcription factors, coupled with the induction of the pathogen-pattern triggered immunity (PTI), systemic acquired resistance (SAR), symbiotic signaling pathway, and the activation of genes associated with the response mechanisms against viruses. This comprehensive transcriptome profile of GRH-responsive genes gives new insights into the molecular response mechanisms underlying GRH (insect pest)-rice (plant) interaction.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hemípteros , Oryza/genética , Oryza/parasitologia , Proteínas de Transporte Vesicular/genética , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Oxirredução , Reguladores de Crescimento de Plantas/metabolismo , Metabolismo Secundário , Transdução de Sinais , Transcriptoma , Proteínas de Transporte Vesicular/metabolismo
10.
Genes (Basel) ; 12(5)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069231

RESUMO

Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.


Assuntos
Nitrogênio/metabolismo , Oryza/genética , Locos de Características Quantitativas/genética , Alelos , Mapeamento Cromossômico/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Genes de Plantas/genética , Genótipo , Haploidia , Oryza/metabolismo , Fenótipo
11.
J Exp Bot ; 72(12): 4254-4268, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33831183

RESUMO

We previously identified a cluster of yield-related quantitative trait loci (QTLs) including plant height in CR4379, a near-isogenic line from a cross between Oryza sativa spp. japonica cultivar 'Hwaseong' and the wild relative Oryza rufipogon. Map-based cloning and transgenic approaches revealed that APX9, which encodes an l-ascorbate peroxidase 4, is associated with this cluster. A 3 bp InDel was observed leading to the addition of a valine in Hwaseong compared with O. rufipogon. APX9-overexpressing transgenic plants in the Hwaseong background were taller than Hwaseong. Consistent with these results, APX9 T-DNA insertion mutants in the japonica cultivar Dongjin were shorter. These results confirm that APX9 is the causal gene for the QTL cluster. Sequence analysis of APX9 from 303 rice accessions revealed that the 3 bp InDel clearly differentiates japonica (APX9HS) and O. rufipogon (APX9OR) alleles. indica accessions shared both alleles, suggesting that APX9HS was introgressed into indica followed by crossing. The finding that O. rufipogon accessions with different origins carry APX9OR suggests that the 3 bp insertion was specifically selected in japonica during its domestication. Our findings demonstrate that APX9 acts as a major regulator of plant development by controlling a valuable suite of agronomically important traits in rice.


Assuntos
Oryza , Locos de Características Quantitativas , Ascorbato Peroxidases , Cruzamentos Genéticos , Oryza/genética , Fenótipo , Locos de Características Quantitativas/genética
12.
Plants (Basel) ; 10(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668736

RESUMO

Bakanae disease is a fungal disease of rice (Oryza sativa L.) caused by the pathogen Gibberella fujikuroi (also known as Fusarium fujikuroi). This study was carried out to identify novel quantitative trait loci (QTLs) from an indica variety Zenith. We performed a QTL mapping using 180 F2:9 recombinant inbred lines (RILs) derived from a cross between the resistant variety, Zenith, and the susceptible variety, Ilpum. A primary QTL study using the genotypes and phenotypes of the RILs indicated that the locus qBK1z conferring bakanae disease resistance from the Zenith was located in a 2.8 Mb region bordered by the two RM (Rice Microsatellite) markers, RM1331 and RM3530 on chromosome 1. The log of odds (LOD) score of qBK1z was 13.43, accounting for 30.9% of the total phenotypic variation. A finer localization of qBK1z was delimited at an approximate 730 kb interval in the physical map between Chr01_1435908 (1.43 Mbp) and RM10116 (2.16 Mbp). Introducing qBK1z or pyramiding with other previously identified QTLs could provide effective genetic control of bakanae disease in rice.

13.
Front Plant Sci ; 11: 564824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281840

RESUMO

Rice, Oryza sativa L., is a cultivated, inbreeding species that serves as the staple food for the largest number of people on earth. It has two strongly diverged varietal groups, Indica and Japonica, which result from a combination of natural and human selection. The genetic divergence of these groups reflects the underlying population structure of their wild ancestors, and suggests that a pre-breeding strategy designed to take advantage of existing genetic, geographic and ecological substructure may provide a rational approach to the utilization of crop wild ancestors in plant improvement. Here we describe the coordinated development of six introgression libraries (n = 63 to 81 lines per library) in both Indica (cv. IR64) and Japonica (cv. Cybonnet) backgrounds using three bio-geographically diverse wild donors representing the Oryza rufipogon Species Complex from China, Laos and Indonesia. The final libraries were genotyped using an Infinium 7K rice SNP array (C7AIR) and analyzed under greenhouse conditions for several simply inherited (Mendelian) traits. These six interspecific populations can be used as individual Chromosome Segment Substitution Line libraries and, when considered together, serve as a powerful genetic resource for systematic genetic dissection of agronomic, physiological and developmental traits in rice.

14.
Genes (Basel) ; 11(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076295

RESUMO

Previously, five putative quantitative trait loci (QTLs) for low-temperature germination (LTG) have been detected using 96 BC3F8 lines derived from an interspecific cross between the Korean japonica cultivar "Hwaseong" and Oryza rufipogon. In the present study, two introgression lines, CR1517 and CR1518, were used as parents to detect additional QTLs and analyze interactions among QTLs for LTG. The F2 population (154 plants) along with parental lines, Hwaseong and O. rufipogon, were evaluated for LTG and coleoptile length under low-temperature conditions (13 °C). Among five QTLs for LTG, two major QTLs, qLTG1 and qLTG3, were consistently detected at 6 and 7 days after incubation. Three minor QTLs were detected on chromosomes 8 and 10. Two QTLs, qLTG10.1 and qLTG10.2, showing linkage on chromosome 10, exerted opposite effects with the Hwaseong allele at qLTG10.2 and the O. rufipogon allele at qLTG10.1 respectively, in turn, increasing LTG. Interactions among QTLs were not significant, implying that the QTLs act in an additive manner. Near-isogenic line plants with the combination of favorable alleles from O. rufipogon and Hwaseong exhibited higher LTG than two introgression lines. With regard to coleoptile length, three QTLs observed on chromosomes 1, 3, and 8 were colocalized with QTLs for LTG, suggesting the pleiotropy of the single gene at each locus. According to the results, the introgression of favorable O. rufipogon alleles could hasten the development of rice with high LTG and high coleoptile elongation in japonica cultivars.


Assuntos
Cromossomos de Plantas/genética , Cotilédone/genética , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Temperatura Baixa , Cotilédone/anatomia & histologia , Cotilédone/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Ligação Genética , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Fenótipo
15.
Int J Mol Sci ; 21(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131496

RESUMO

Leaf senescence is the final stage of plant development. Many internal and external factors affect the senescence process in rice (Oryza sativa L.). In this study, we identified qCC2, a major quantitative trait locus (QTL) for chlorophyll content using a population derived from an interspecific cross between O. sativa (cv. Hwaseong) and Oryza grandiglumis. The O. grandiglumis allele at qCC2 increased chlorophyll content and delayed senescence. GW2 encoding E3 ubiquitin ligase in the qCC2 region was selected as a candidate for qCC2. To determine if GW2 is allelic to qCC2, a gw2-knockout mutant (gw2-ko) was examined using a dark-induced senescence assay. gw2-ko showed delayed leaf senescence in the dark with down-regulated expression of senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs). The association of the GW2 genotype with the delayed senescence phenotype was confirmed in an F2 population. RNA-seq analysis was conducted to investigate 30-day-old leaf transcriptome dynamics in Hwaseong and a backcross inbred line-CR2002-under dark treatment. This resulted in the identification of genes involved in phytohormone signaling and associated with senescence. These results suggested that transcriptional regulation was associated with delayed senescence in CR2002, and RING-type E3 ubiquitin ligase GW2 was a positive regulator of leaf senescence in rice.


Assuntos
Clorofila/metabolismo , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Clorofila/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Locos de Características Quantitativas , Luz Solar , Transcriptoma , Ubiquitina-Proteína Ligases/genética
17.
PLoS One ; 14(12): e0225974, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800632

RESUMO

The development of new improved varieties is one of the major goals of plant breeding. Concomitantly, the demand for stable, eco-friendly, and high-quality rice production is constantly increasing. However, most farmers prefer to cultivate familiar rice varieties developed more than 10 years ago to minimize economic risk. A strategy is needed to develop rice varieties without the limitations of the preferred old varieties. Here, we tested the rapid development of near isogenic lines (NILs) using a rapid generation advance system together with marker-assisted backcrossing to overcome the shortcomings of parental materials. For this purpose, we chose rice stripe virus (RSV) susceptible variety Unkwang and RSV resistant variety Haedamssal as experimental materials. First, we backcrossed and screened BC1F1 and BC2F1 plants having similar agronomic traits as Unkwang and the heterozygous genotype for RSV resistant specific marker InDel7 from Haedamssal. Secondly, the genetic background of 11 BC2F1 plants was identified with 73 KASP markers; plants of line YR32548-8 showed 84.5% of recovery of the recurrent parent genome. Among 28 BC2F2 plants, YR32548-8-16 was the line that showed maximum recovery of the recurrent parent genome (96.2%) while effectively introgressed with RSV-resistance loci on chromosome 11. Finally, we selected line YR32548-8-16 as an NIL showing an RSV resistant phenotype and similar agronomic traits to Unkwang. This fast breeding approach will be useful in rice breeding programs for the improvement of varieties preferred by farmers for their stress tolerance, yield, or quality.


Assuntos
Cruzamentos Genéticos , Resistência à Doença/genética , Marcadores Genéticos , Oryza/genética , Oryza/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Genes de Plantas , Melhoramento Vegetal , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
18.
PLoS One ; 13(11): e0206910, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444888

RESUMO

How plants defend themselves from microbial infection is one of the most critical issues for sustainable crop production. Some TGA transcription factors belonging to bZIP superfamily can regulate disease resistance through NPR1-mediated immunity mechanisms in Arabidopsis. Here, we examined biological roles of OsTGA2 (grouped into the same subclade as Arabidopsis TGAs) in bacterial leaf blight resistance. Transcriptional level of OsTGA2 was accumulated after treatment with salicylic acid, methyl jasmonate, and Xathomonas oryzae pv. Oryzae (Xoo), a bacterium causing serious blight of rice. OsTGA2 formed homo- and hetero-dimer with OsTGA3 and OsTGA5 and interacted with rice NPR1 homologs 1 (NH1) in rice. Results of quadruple 9-mer protein-binding microarray analysis indicated that OsTGA2 could bind to TGACGT DNA sequence. Overexpression of OsTGA2 increased resistance of rice to bacterial leaf blight, although overexpression of OsTGA3 resulted in disease symptoms similar to wild type plant upon Xoo infection. Overexpression of OsTGA2 enhanced the expression of defense related genes containing TGA binding cis-element in the promoter such as AP2/EREBP 129, ERD1, and HOP1. These results suggest that OsTGA2 can directly regulate the expression of defense related genes and increase the resistance of rice against bacterial leaf blight disease.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Resistência à Doença/genética , Oryza/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidade , Acetatos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Ciclopentanos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/imunologia , Oryza/microbiologia , Oxilipinas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Ligação Proteica/genética , Ligação Proteica/imunologia , Elementos de Resposta/genética , Ácido Salicílico/farmacologia , Xanthomonas/imunologia
19.
Genes Genomics ; 40(4): 389-397, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29892844

RESUMO

A quantitative trait locus (QTL) gw8.1 was detected in the population derived from a cross between the elite japonica cultivar, 'Hwaseong' and Oryza rufipogon (IRGC 105491). Near isogenic lines (NILs) harboring the O. rufipogon segment on chromosome 8 showed increased grain length and weight compared to those of the recurrent parent, Hwaseong. This QTL was mapped to a 175.3-kb region containing 28 genes, of which four were considered as candidates based on the presence of mutations in their coding regions and as per the RNA expression pattern during the inflorescence stage. Leaves and panicles obtained from plants harvested 5 days after heading showed differences in gene expression between Hwaseong and gw8.1-NILs. Most genes were upregulated in O. rufipogon and gw8.1-NIL than in Hwaseong. Scanning electron microscopy analysis of the lemma inner epidermal cells indicated that cell length was higher in gw8.1 NIL than in Hwaseong, indicating that gw8.1 might regulate cell elongation. Among the candidate genes, LOC_Os08g34380 encoding a putative receptor-like kinase and LOC_Os08g34550 encoding putative RING-H2 finger protein were considered as possible candidates based on their functional similarity.


Assuntos
Oryza/genética , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Grão Comestível/genética , Genes de Plantas , Estudos de Associação Genética , Fenótipo , Locos de Características Quantitativas
20.
Rice (N Y) ; 10(1): 32, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28710696

RESUMO

BACKGROUND: Direct-seeding cultivation by deep-seeding of seeds (drill seeding) is becoming popular due to the scarcity of land and labor. However, poor emergence and inadequate seedling establishment can lead to yield loss in direct-seeding cultivation by deep-sowing. In rice, mesocotyl and coleoptile are primarily responsible for seedling emergence from deeper levels of soil. RESULTS: Quantitative trait loci (QTLs) for mesocotyl and coleoptile length at 5-cm seeding depth were detected using 98 backcross inbred lines from a cross between Kasalath and Nipponbare. Three QTLs qMel-1, qMel-3, and qMel-6 for mesocotyl length were identified on chromosomes 1, 3, and 6, respectively, in two independent replicates. At two QTLs, qMel-1 and qMel-3, the Kasalath alleles increased mesocotyl length, whereas Nipponbare allele increased at qMel-6. The Nipponbare alleles at two QTLs (qCol-3 and qCol-5) increased the coleoptile length. Further, seeds of 54 chromosome segment substitution lines (CSSLs) from the cross between Kasalath and Nipponbare sown at 5 cm soil depth showed a significant positive correlation between seedling emergence and mesocotyl elongation (r > 0.6, P < 0.0001), but not with coleoptile elongation (r = 0.05, P = 0.7). Seedling emergence of Nipponbare, Kasalath, and the 3 of the 54 CSSLs rapidly decreased with increasing sowing depth. Seedling emergence at seeding depths of 7 and 10 cm was faster in Kasalath and CSSL-5 that harbored the Kasalath alleles across the qMel-1 and qMel-3 regions than in the other two CSSLs that contained a single QTL and Nipponbare alleles. CSSL-5 showed the longest mesocotyl among the 3 CSSLs, but no difference in coleoptile length was observed among the 3 CSSLs at seeding depths of 7 and 10 cm. CONCLUSION: Variation of mesocotyl elongation was found to be associated with seedling emergence at the seeding depth of 5 cm. To our knowledge, this is the first study performed using CSSLs to detect QTLs for mesocotyl or coleoptile elongation and to determine the effect of mesocotyl elongation on seedling emergence in rice. Our findings provides a foundation for developing rice cultivars that show higher seedling emergence after direct seeding by introgressing QTLs for mesocotyl elongation in rice breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...