Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autism ; 28(6): 1503-1518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38263761

RESUMO

LAY ABSTRACT: Memory challenges remain understudied in childhood autism. Our study investigates one specific aspect of memory function, known as pattern separation memory, in autistic children. Pattern separation memory refers to the critical ability to store unique memories of similar stimuli; however, its role in childhood autism remains largely uncharted. Our study first uncovered that the pattern separation memory was significantly reduced in autistic children, and then showed that reduced memory performance was linked to their symptoms of repetitive, restricted interest and behavior. We also identified distinct subgroups with profiles of reduced and increased generalization for pattern separation memory. More than 72% of autistic children showed a tendency to reduce memory generalization, focusing heavily on unique details of objects for memorization. This focus made it challenging for them to identify commonalities across similar entities. Interestingly, a smaller proportion of autistic children displayed an opposite pattern of increased generalization, marked by challenges in differentiating between similar yet distinct objects. Our findings advance the understanding of memory function in autism and have practical implications for devising personalized learning strategies that align with the unique memory patterns exhibited by autistic children. This study will be of broad interest to researchers in psychology, psychiatry, and brain development as well as teachers, parents, clinicians, and the wider public.


Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Masculino , Feminino , Transtorno do Espectro Autista/psicologia , Transtorno Autístico/psicologia , Adolescente , Memória , Generalização Psicológica
2.
Elife ; 122023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534879

RESUMO

Children with autism spectrum disorders (ASDs) often display atypical learning styles; however, little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. While learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.


Assuntos
Transtorno Autístico , Criança , Humanos , Treino Cognitivo , Aprendizagem , Encéfalo/diagnóstico por imagem , Cognição
3.
Artigo em Inglês | MEDLINE | ID: mdl-37196984

RESUMO

BACKGROUND: Memory impairments have profound implications for social communication and educational outcomes in children with autism spectrum disorder (ASD). However, the precise nature of memory dysfunction in children with ASD and the underlying neural circuit mechanisms remain poorly understood. The default mode network (DMN) is a brain network that is associated with memory and cognitive function, and DMN dysfunction is among the most replicable and robust brain signatures of ASD. METHODS: We used a comprehensive battery of standardized episodic memory assessments and functional circuit analyses in 25 8- to 12-year-old children with ASD and 29 matched typically developing control children. RESULTS: Memory performance was reduced in children with ASD compared with control children. General and face memory emerged as distinct dimensions of memory difficulties in ASD. Importantly, findings of diminished episodic memory in children with ASD were replicated in 2 independent data sets. Analysis of intrinsic functional circuits associated with the DMN revealed that general and face memory deficits were associated with distinct, hyperconnected circuits: Aberrant hippocampal connectivity predicted diminished general memory while aberrant posterior cingulate cortex connectivity predicted diminished face memory. Notably, aberrant hippocampal-posterior cingulate cortex circuitry was a common feature of diminished general and face memory in ASD. CONCLUSIONS: Our results represent a comprehensive appraisal of episodic memory function in children with ASD and identify extensive and replicable patterns of memory reductions in children with ASD that are linked to dysfunction of distinct DMN-related circuits. These findings highlight a role for DMN dysfunction in ASD that extends beyond face memory to general memory function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Criança , Transtorno Autístico/complicações , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Encéfalo , Transtornos da Memória/etiologia
4.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747659

RESUMO

Children with autism spectrum disorders (ASD) often display atypical learning styles, however little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. Critically, while learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.

5.
Dev Sci ; 24(6): e13123, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34060183

RESUMO

Mathematical knowledge is constructed hierarchically from basic understanding of quantities and the symbols that denote them. Discrimination of numerical quantity in both symbolic and non-symbolic formats has been linked to mathematical problem-solving abilities. However, little is known of the extent to which overlap in quantity representations between symbolic and non-symbolic formats is related to individual differences in numerical problem solving and whether this relation changes with different stages of development and skill acquisition. Here we investigate the association between neural representational similarity (NRS) across symbolic and non-symbolic quantity discrimination and arithmetic problem-solving skills in early and late developmental stages: elementary school children (ages 7-10 years) and adolescents and young adults (AYA, ages 14-21 years). In children, cross-format NRS in distributed brain regions, including parietal and frontal cortices and the hippocampus, was positively correlated with arithmetic skills. In contrast, no brain region showed a significant association between cross-format NRS and arithmetic skills in the AYA group. Our findings suggest that the relationship between symbolic-non-symbolic NRS and arithmetic skills depends on developmental stage. Taken together, our study provides evidence for both mapping and estrangement hypotheses in the context of numerical problem solving, albeit over different cognitive developmental stages.


Assuntos
Cognição , Resolução de Problemas , Adolescente , Adulto , Encéfalo , Criança , Humanos , Individualidade , Matemática , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA