Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 27(1): 41-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080363

RESUMO

Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field-based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field-based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat-specific dispersal rates and characterize habitat quality in two-toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field-based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture-forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower-quality habitat than pasture-forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field-based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes.


Assuntos
Agricultura , Ecologia , Ecossistema , Genômica , Bichos-Preguiça/genética , Clima Tropical , Animais , Costa Rica , Feminino , Geografia , Comportamento de Retorno ao Território Vital
2.
BMC Evol Biol ; 17(1): 58, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241737

RESUMO

BACKGROUND: Over the last 300 years, interactions between alewives and zooplankton communities in several lakes in the U.S. have caused the alewives' morphology to transition rapidly from anadromous to landlocked. Lakes with landlocked alewives contain smaller-bodied zooplankton than those without alewives. Landlocked adult alewives display smaller body sizes, narrower gapes, smaller inter-gill-raker spacings, reach maturity at an earlier age, and are less fecund than anadromous alewives. Additionally, landlocked alewives consume pelagic prey exclusively throughout their lives whereas anadromous alewives make an ontogenetic transition from pelagic to littoral prey. These rapid, well-documented changes in the alewives' morphology provide important insights into the morphological evolution of fish. Predicting the morphological evolution of fish is crucial for fisheries and ecosystem management, but the involvement of multiple trophic interactions make predictions difficult. To obtain an improved understanding of rapid morphological change in fish, we developed an individual-based model that simulated rapid changes in the body size and gill-raker count of a fish species in a hypothetical, size-structured prey community. Model parameter values were based mainly on data from empirical studies on alewives. We adopted a functional trait approach; consequently, the model explicitly describes the relationships between prey body size, alewife body size, and alewife gill-raker count. We sought to answer two questions: (1) How does the impact of alewife populations on prey feed back to impact alewife size and gill raker number under several alternative scenarios? (2) Will the trajectory of the landlocked alewives' morphological evolution change after 150-300 years in freshwater? RESULTS: Over the first 250 years, the alewives' numbers of gill-rakers only increased when reductions in their body size substantially improved their ability to forage for small prey. Additionally, alewives' gill-raker counts increased more rapidly as the adverse effects of narrow gill-raker spacings on foraging for large prey were made less severe. For the first 150-250 years, alewives' growth decreased monotonically, and their gill-raker number increased monotonically. After the first 150-250 years, however, the alewives exhibited multiple evolutionary morphological trajectories in different trophic settings. In several of these settings, their evolutionary trajectories even reversed after the first 150-250 years. CONCLUSIONS: Alewives affected the abundance and morphology of their prey, which in turn changed the abundance and morphology of the alewives. Complex low-trophic-level interactions can alter the abundance and characteristics of alewives. This study suggests that the current morphology of recently (∼300 years)-landlocked alewives may not represent an evolutionarily stable state.


Assuntos
Ecossistema , Peixes/anatomia & histologia , Peixes/fisiologia , Lagos , Zooplâncton/fisiologia , Animais , Evolução Biológica , Feminino , Fertilidade , Brânquias/anatomia & histologia , Masculino
3.
Pest Manag Sci ; 70(6): 996-1007, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23996641

RESUMO

BACKGROUND: Emergence delay and female-skewed sex ratios among adults of Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) from Bt corn have been reported in field studies. The authors used a simulation model to study the effect of a maturation delay and a female-skewed sex ratio for D. v. virgifera emerging from Bt corn on the evolution of Bt resistance. RESULTS: The effect of skewed toxin mortality in one sex on evolution of Bt resistance was insignificant. An emergence delay among resistant beetles from Bt corn slowed resistance evolution. A shift in the time of emergence for homozygous susceptible beetles from Bt corn did not have a significant effect on the evolution of Bt resistance in D. v. virgifera. CONCLUSION: This simulation study suggested that skewed toxin mortality in one sex and an emergence delay for beetles in Bt corn are not major concerns for managing resistance by D. v. virgifera to single-toxin or pyramided Bt corn.


Assuntos
Bacillus thuringiensis/genética , Besouros/efeitos dos fármacos , Resistência a Inseticidas , Plantas Geneticamente Modificadas , Zea mays/genética , Animais , Besouros/crescimento & desenvolvimento , Simulação por Computador , Feminino , Larva , Masculino , Controle Biológico de Vetores , Razão de Masculinidade
4.
J Econ Entomol ; 106(6): 2473-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24498750

RESUMO

The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), can cause up to 100% yield loss of stored cowpea seeds in a few months in West Africa. Genes expressing toxins delaying insect maturation (MDTs) are available for genetic engineering. A simulation model was used to investigate the possible use of MDTs for managing C. maculatus. Specifically, we studied the effect of transgenic cowpea expressing an MDT, an insecticide, or both, on the evolution of resistance by C. maculatus at constant temperature. Transgenic cowpea expressing only a nonlethal MDT causing 50-100% maturation delay did not control C. maculatus well. Mortality caused by a maturation delay improved the efficacy of transgenic cowpea expressing only a lethal MDT, but significantly reduced the durability of transgenic cowpea Transgenic cowpea expressing only a lethal MDT causing 50% maturation delay and 90% mortality controlled C. maculatus better than one expressing only a nonlethal MDT, but its durability was only 2 yr. We concluded that transgenic cowpea expressing only an MDT has little value for managing C. maculatus. The resistance by C. maculatus to transgenic cowpea expressing only an insecticide rapidly evolved. Stacking a gene expressing a nonlethal MDT and a gene expressing an insecticide in transgenic cowpea did not significantly improve the durability of an insecticide, but stacking a gene expressing a lethal MDT and a gene expressing an insecticide in transgenic cowpea significantly improved the durability of an insecticide and an MDT. We also discussed this approach within the idea of using transgenic RNAi in pest control strategies.


Assuntos
Toxinas Bacterianas/toxicidade , Besouros/efeitos dos fármacos , Besouros/fisiologia , Fabaceae/genética , Inseticidas/toxicidade , Controle Biológico de Vetores/métodos , Animais , Besouros/crescimento & desenvolvimento , Besouros/microbiologia , Modelos Biológicos , Plantas Geneticamente Modificadas/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...