Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 117: 154908, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321077

RESUMO

BACKGROUND: Abnormal endocrine metabolism caused by polycystic ovary syndrome combined with insulin resistance (PCOS-IR) poses a serious risk to reproductive health in females. Quercitrin is a flavonoid that can efficiently improve both endocrine and metabolic abnormalities. However, it remains unclear if this agent can exert therapeutic effect on PCOS-IR. METHODS: The present study used a combination of metabolomic and bioinformatic methods to screen key molecules and pathways involved in PCOS-IR. A rat model of PCOS-IR and an adipocyte IR model were generated to investigate the role of quercitrin in regulating reproductive endocrine and lipid metabolism processes in PCOS-IR. RESULTS: Peptidase M20 domain containing 1 (PM20D1) was screened using bioinformatics to evaluate its participation in PCOS-IR. PCOS-IR regulation via the PI3K/Akt signaling pathway was also investigated. Experimental analysis showed that PM20D1 levels were reduced in insulin-resistant 3T3-L1 cells and a letrozole PCOS-IR rat model. Reproductive function was inhibited, and endocrine metabolism was abnormal. The loss of adipocyte PM20D1 aggravated IR. In addition, PM20D1 and PI3K interacted with each other in the PCOS-IR model. Furthermore, the PI3K/Akt signaling pathway was shown to participate in lipid metabolism disorders and PCOS-IR regulation. Quercitrin reversed these reproductive and metabolic disorders. CONCLUSION: PM20D1 and PI3K/Akt were required for lipolysis and endocrine regulation in PCOS-IR to restore ovarian function and maintain normal endocrine metabolism. By upregulating the expression of PM20D1, quercitrin activated the PI3K/Akt signaling pathway, improved adipocyte catabolism, corrected reproductive and metabolic abnormalities, and had a therapeutic effect on PCOS-IR.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Síndrome do Ovário Policístico , Feminino , Animais , Ratos , Ratos Sprague-Dawley , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/metabolismo , Resistência à Insulina , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Camundongos , Linhagem Celular , Aminoidrolases/metabolismo
2.
Int Immunopharmacol ; 116: 109826, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764269

RESUMO

Reduced Na+/K+-ATPase (NKA) activity and NKAα1 expression are engaged in the pathologies of renal diseases. NKA-mediated Src activation is not the only reason for NKA-related renal fibrosis. In this study, we found that genetic reduction of NKAα1 exhibited exacerbated tubulointerstitial lesions and fibrosis in the UUO mice model. Activation of NKAα1 with an antibody against the extracellular DR region of the NKAα1 subunit (DRm217) prevented UUO-induced tubulointerstitial lesions, preserved kidney function, and decrease renal fibrosis. Further studies revealed that NKAα1 deficiency mice exhibited high inflammation factors expression when they suffered UUO surgery, compared with NKAα1+/+ (WT) mice. DRm217 alleviated inflammatory cell infiltration, suppress NF-κB phosphorylation, and decreased inflammatory factors expression in the UUO mice model. Released HMGB1 can trigger the inflammatory response and contribute to renal fibrosis. Knockdown of NKA in renal tubular cells or in NKAα1+/- mice was associated with more susceptibility to HMGB1 release in the UUO mice model. DRm217 exerted its antifibrotic effect via inhibiting HMGB1 release. Furthermore, AMPK activation participates in the effect of DRm217 on inhibiting HMGB1 release. Our findings suggest that NKAα1 is a regulator of renal fibrosis and its DR-region is a novel target on it.


Assuntos
Proteína HMGB1 , Nefropatias , Obstrução Ureteral , Camundongos , Animais , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Rim/patologia , Nefropatias/patologia , Anticorpos Monoclonais/farmacologia , Fibrose
3.
Exp Biol Med (Maywood) ; 247(19): 1785-1794, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833534

RESUMO

The enzyme Na+/K+-ATPase (NKA) is important in the heart. Reductions in NKA activity and expression have often been observed in chronic kidney disease (CKD)-related heart injury. Previously, our group found that an antibody targeting the NKA1α1 subunit's DR extracellular region (897DVEDSYGQQWTYEQR911) stimulated NKA activities and produced cardioprotective effects against ischemic injury and isoproterenol-induced cardiac remodeling. In here, we assessed whether DRm217, a specific DR antibody, exhibits cardioprotective effects in chronic renal failure models. In 5/6 nephrectomy (5/6 Nx) surgery to mimic CKD in Sprague Dawley rat, we observed that NKA activity and expression were depressed in the hearts of 5/6 Nx rats. DRm217, an NKA DR region antibody, alleviated heart hypertrophy and cardiac fibrosis under 5/6 Nx conditions. Further studies revealed that DRm217 inhibited Src activation and reduced reactive oxygen species (ROS) levels in hearts under 5/6 Nx conditions. Our findings imply that NKA could be a treatment target in CKD-related cardiac diseases. Prevention of CKD-induced myocardial injury by DRm217 provides an appealing therapeutic alternative.


Assuntos
Insuficiência Renal Crônica , ATPase Trocadora de Sódio-Potássio , Ratos , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Ratos Sprague-Dawley , Cardiomegalia , Fibrose , Nefrectomia , Anticorpos/farmacologia , Anticorpos/uso terapêutico
4.
Front Endocrinol (Lausanne) ; 12: 652807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868179

RESUMO

Recurrent spontaneous abortion (RSA) remains a critical and challenging problem in reproduction. To discover novel biomarkers for RSA, ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) metabolomics approach was applied to detect RSA serum metabolic profiles and explore its possible pathogenesis and mechanism. The abortion rat model was established, and a metabolomics analysis was performed to evaluate the differentially expressed metabolites between the control and model groups. Immunohistochemistry (IHC), qRT-PCR, and Western blot further examined the expression of Arachidonic acid metabolism-related genes in uterus tissues. To identify arachidonic acid metabolism-related changes in RSA, ELISA's potential mechanisms were further confirmed in serum. Ninety-one metabolites were significantly different between the two groups, as indicated by a VIP ≥1, fold change ≥1. The metabolic pathways involving arachidonic acid metabolism pathway (P = 0.00044) are related to RSA. Verification by experimental showed that compared with the control rats, the expression of the COX-1, COX-2, PTGFR, and TBXA2R genes associated with the arachidonic acid metabolism pathway has significantly increased the uterus and serum of RSA rats (P < 0.05). Regulation of the arachidonic acid metabolism pathway might serve as a promising therapeutic strategy for relieving RSA women's symptoms.


Assuntos
Aborto Habitual/sangue , Ácido Araquidônico/sangue , Cromatografia Líquida de Alta Pressão/métodos , Regulação da Expressão Gênica , Metabolômica/métodos , Prenhez , Espectrometria de Massas em Tandem/métodos , Animais , Ácido Araquidônico/química , Biomarcadores/sangue , Ciclo-Oxigenase 1/sangue , Ciclo-Oxigenase 2/sangue , Feminino , Imuno-Histoquímica , Masculino , Proteínas de Membrana/sangue , Redes e Vias Metabólicas , Metaboloma , Gravidez , Prostaglandinas/sangue , Ratos , Ratos Endogâmicos Lew , Receptores de Prostaglandina/sangue , Receptores de Tromboxano A2 e Prostaglandina H2/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...