Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(22)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203085

RESUMO

To have an objective depression diagnosis, numerous studies based on machine learning and deep learning using electroencephalogram (EEG) have been conducted. Most studies depend on one-dimensional raw data and required fine feature extraction. To solve this problem, in the EEG visualization research field, short-time Fourier transform (STFT), wavelet, and coherence commonly used as method s for transferring EEG data to 2D images. However, we devised a new way from the concept that EEG's asymmetry was considered one of the major biomarkers of depression. This study proposes a deep-asymmetry methodology that converts the EEG's asymmetry feature into a matrix image and uses it as input to a convolutional neural network. The asymmetry matrix image in the alpha band achieved 98.85% accuracy and outperformed most of the methods presented in previous studies. This study indicates that the proposed method can be an effective tool for pre-screening major depressive disorder patients.


Assuntos
Aprendizado Profundo , Transtorno Depressivo Maior , Redes Neurais de Computação , Transtorno Depressivo Maior/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA