Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res X ; 22: 100211, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298331

RESUMO

Among the various substances found in the feed source for the production of ultrapure water (UPW), urea is challenging to remove because it is a small molecular weight molecule that is not easily oxidized and does not carry a charge under neutral pH conditions. Urease enzyme, found in various organisms such as plants and bacteria, catalyze the hydrolysis of urea into carbon dioxide and ammonia. In this study, urease was immobilized on the polyamide layer of a reverse osmosis (RO) membrane to remove urea in UPW systems. The removal efficiency of urea by urease-coated RO membrane showed up to 27.9 % higher urea removal efficiency compared to the pristine membrane. This increase in urea removal can be attributed to both physical and biological effects from the urease coating on the membrane. Firstly, urease on the membrane surface can act as an additional physical barrier for urea to pass through. Secondly, urea can be hydrolyzed by the enzyme when it passes through the urease-coated RO membrane. In a two-pass RO system typical for UPW production, the removal of urea by a urease-coated membrane would be enhanced by twofold. This overall method can significantly increase the removal efficiency of urea in UPW systems, especially when considering the compounded removal by the urease coating, rejection by RO, and additional reactions by other treatment processes. Moreover, urea in UPW systems can be removed without the installment of additional processes by simply coating urease on the existing RO membranes.

2.
Carbohydr Polym ; 327: 121642, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171670

RESUMO

Chitosan has excellent antimicrobial, adsorption, heavy metal removal, and adhesion properties, making it a good substitute for microplastic-based cleaners. Here, chitosan microbeads (chito-beads) of various sizes ranging from 32 µm to 283 µm were prepared via emulsion using a liquid on oil method and the feasibility of using them as an essential constituent in a chemical cleaning solution for a reverse-osmosis (RO) membrane-fouling-control process was assessed. Prior to the assessment the cleaning efficiency of a solution containing chito-beads, the interaction energy between chitosan and a representative organic foulant (humic acid (HA)) in a RO membrane fouling was analyzed using colloidal atomic force microscopy, and the strongest attraction between chitosan and HA was observed in an aqueous solution. When comparing the membrane cleaning efficiency of cleaning solutions with and without chito-beads, smaller chito-beads (32 µm and 70 µm) were found to have higher cleaning efficiency. Applications of chito-beads to the membrane cleaning process can enhance the cleaning efficiency through the physicochemical interaction with organic foulants. This study can widen the use of chito-beads as an additive to membrane chemical cleaning solutions to control membrane fouling in other membrane processes as well.

3.
Water Res ; 249: 120951, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070342

RESUMO

In this work, urchin-like structured hydroxyapatite-incorporated nickel magnetite (NiFe3O4/UHdA) microspheres were developed for the efficient removal of micropollutants (MPs) via peroxydisulfate (PDS) activation. The prepared NiFe3O4/UHdA degraded 99.0 % of sulfamethoxazole (SMX) after 15 min in 2 mM PDS, having a first-order kinetic rate constant of 0.210 min-1. In addition, NiFe3O4/UHdA outperformed its counterparts, i.e., Fe3O4/UHdA and Ni/UHdA, by giving rise to corresponding 3.6-fold and 8.6-fold enhancements in the SMX removal rate. The outstanding catalytic performance can be ascribed to (1) the urchin-like mesoporous structure with a large specific surface area and (2) the remarkable synergistic effect caused by the redox cycle of Ni3+/Ni2+ and Fe2+/Fe3+ that enhances multipath electron transfers on the surface of NiFe3O4/UHdA to produce more reactive oxygen species. Moreover, the effects of several reaction parameters, in this case the initial solution pH, PDS dosage, SMX concentration, catalyst loading, co-existing MPs and humic acid level on the catalytic performance of the NiFe3O4/UHdA + PDS system were systematically investigated and discussed in detail. The plausible catalytic mechanisms in the NiFe3O4/UHdA + PDS system were revealed via scavenging experiments and electron paramagnetic resonance analysis, which indicated a radical (•OH and SO4•-) as the major pathway and a nonradical (1O2) as the minor pathway for SMX degradation. Furthermore, NiFe3O4/UHdA exhibited fantastic magnetically separation and retained good catalytic activity with a low leached ion concentration during the performance of four cycles. Overall, the prepared NiFe3O4/UHdA with outstanding PDS activation could be a promising choice for the degradation of persistent organic pollutants from wastewater.


Assuntos
Óxido Ferroso-Férrico , Níquel , Sulfametoxazol/química , Oxirredução , Hidroxiapatitas
4.
Chemosphere ; 350: 140989, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135126

RESUMO

Water treatment plants are facing challenges that necessitate transition to automated processes using advanced technologies. This study introduces a novel approach to optimize coagulant dosage in water treatment processes by employing a deep learning model. The study utilized minute-by-minute data monitored in real time over a span of five years, marking the first attempt in drinking water process modeling to leverage such a comprehensive dataset. The deep learning model integrates a one-dimensional convolutional neural network (Conv1D) and gated recurrent unit (GRU) to effectively extract features and model complex time-series data. Initially, the model predicted coagulant dosage and sedimentation basin turbidity, validated against a physicochemical model. Subsequently, the model optimized coagulant dosage in two ways: 1) maintaining sedimentation basin turbidity below the 1.0 NTU guideline, and 2) analyzing changes in sedimentation basin turbidity resulting from reduced coagulant dosage (5-20%). The findings of the study highlight the effectiveness of the deep learning model in optimizing coagulant dosage with substantial reductions in coagulant dosage (approximately 22% reduction and 21 million KRW/year). The results demonstrate the potential of deep learning models in enhancing the efficiency and cost-effectiveness of water treatment processes, ultimately facilitating process automation.


Assuntos
Aprendizado Profundo , Purificação da Água , Purificação da Água/métodos , Redes Neurais de Computação
5.
Water Res ; 240: 120085, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244016

RESUMO

Membrane-based wastewater reclamation is used to mitigate water scarcity; however, irreversible biofouling is an elusive problem that hinders the efficiency of a forward-osmosis (FO) membrane-based process, and the protein responsible for fouling is unknown. Herein, we identified fouling proteins by analyzing the microbiome and proteome of wastewater extracellular polymeric substances responsible for strong irreversible FO-membrane fouling. The IGLSSLPR peptide of a PilZ domain-containing protein was found to recruit bacterial attachment when immobilized on the membrane surface while suppressing it when dissolved, in a similar manner to the Arg-Gly-Asp (RGD) peptide in mammalian cell cultures. Bacteria adhere to IGLSSLPR and poly-l-lysine-coated membranes with similar energies and exhibit water fluxes that decline similarly, which is ascribable to interaction as strong as electrostatic interactions in the peptide-coated membranes. We conclude that IGLSSLPR is the key domain responsible for membrane fouling and can be used to develop antifouling technology against bacteria, which is similar to the current usage of RGD peptide in mammalian cell cultures.


Assuntos
Incrustação Biológica , Purificação da Água , Águas Residuárias , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Peptídeos , Osmose , Bactérias
7.
Bioresour Technol ; 376: 128897, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931446

RESUMO

Autogenerative high-pressure digestion has an advantage of producing CH4-rich biogas directly from the reactor. However, its continuous operation has rarely been reported, and has never been attempted in an upflow anaerobic sludge blanket reactor (UASB). Here, UASB was continuously operated at 10 g COD/L/d with increasing pressure from 1 to 8 bar. As the pressure increased, the CH4 content in the biogas increased gradually, reaching 96.7 ± 0.8% at 8 bar (309 MJ/m3 biogas). The pH was dropped from 8.2 to 7.2 with pressure increase, but COD removal efficiency was maintained > 90%. The high pressure up to 8 bar did not adversely impact the physicochemical properties of granules, which was due to the increased production of extracellular polymeric substances (EPS), particularly, tightly bound EPS (34% increase). With pressure increase, there was no changes in the microbial community and ATPase gene expression, but 41% increase in carbonic anhydrase gene expression was observed.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Biocombustíveis , Anaerobiose , Reatores Biológicos
8.
Water Res ; 232: 119665, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739659

RESUMO

Determination of coagulant dosage in water treatment is a time-consuming process involving nonlinear data relationships and numerous factors. This study provides a deep learning approach to determine coagulant dosage and/or the settled water turbidity using long-term data between 2011 and 2021 to include the effect of various weather conditions. A graph attention multivariate time series forecasting (GAMTF) model was developed to determine coagulant dosage and was compared with conventional machine learning and deep learning models. The GAMTF model (R2 = 0.94, RMSE = 3.55) outperformed the other models (R2 = 0.63 - 0.89, RMSE = 4.80 - 38.98), and successfully predicted both coagulant dosage and settled water turbidity simultaneously. The GAMTF model improved the prediction accuracy by considering the hidden interrelationships between features and the past states of features. The results demonstrate the first successful application of multivariate time series deep learning model, especially, a state-of-the-art graph attention-based model, using long-term data for decision-support systems in water treatment processes.


Assuntos
Aprendizado Profundo , Purificação da Água , Fatores de Tempo , Aprendizado de Máquina , Purificação da Água/métodos , Tempo (Meteorologia) , Previsões
9.
Environ Sci Technol ; 57(9): 3853-3863, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36826440

RESUMO

Hydraulically irreversible membrane fouling is a major problem encountered during membrane-based water purification. Membrane foulants present large hydrophobic fractions, with humic acid (HA) being a prevalent example of hydrophobic natural organic matter. Furthermore, HA contains numerous aromatic rings (π electrons), and its hydrophobic interactions are a major cause of irreversible membrane fouling. To address this issue, in this study, we used the cation-π interaction, which is a strong noncovalent, competitive interaction present in water. Because the strength of cation-π interactions depends on the combination of cations and π molecules, utilizing the appropriate cations will effectively remove irreversible fouling caused by hydrophobic HA. We performed macroscale experiments to determine the cleaning potential of the test cations, nanomechanically analyzed the changes in HA cohesion caused by the test cations using a surface force apparatus and an atomic force microscope, and used molecular dynamics simulations to elucidate the HA removal mechanism of test studied cations. We found that the addition of 1-ethyl-3-methylimidazolium, an imidazolium cation with an aromatic moiety, effectively removed the HA layer by weakening its cohesion, and the size, hydrophobicity, and polarity of the HA layer synergistically affected the HA removal mechanism based on the cation-π interactions.


Assuntos
Ultrafiltração , Purificação da Água , Substâncias Húmicas , Cátions , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais
10.
Bioresour Technol ; 369: 128430, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464001

RESUMO

Treatment of sulfate-rich wastewater with high methane recovery is a major concern due to sulfide inhibition. Here, an electrical voltage (EV) aims to enhance methanogenesis and sulfidogenesis to treat sulfate-rich wastewater. Two (control and EV-applied) reactors were operated with a gradual decrease in chemical oxygen demand (COD)/SO42- ratios (CSR). EV-applied reactor (EVR) demonstrated an increase of ∼30 % in methane production and ∼40 % in sulfate removal, compared to the control till CSR of 2.0. At CSR 1.0, the control failed, while EVR still exhibited a stable performance of 50 % COD-methane recovery. Microbial community results showed that the relative abundance of sulfate-reducing bacteria in EVR was 1.5 times higher than the control. Furthermore, higher relative abundance of dissimilatory sulfate reductase (>50 %) and Ni/Fe hydrogenase (x15) genes demonstrated an improved tolerance against H2S toxicity. This study highlights the importance of EV application by minimizing the byproduct inhibition in sulfate-rich wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Sulfatos , Reatores Biológicos , Metano
11.
Chemosphere ; 309(Pt 1): 136648, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183878

RESUMO

Although membrane contactors (MCs) have been recognized to be an efficient approach for the removal of ammonia from water streams, factors affecting the MCs performance were not clearly investigated. In this study, the effects of stripping solution chemistry (acid types and concentration), feed solution chemistry (pH, temperature, and ammonia concentration), and stages of MCs system have been comprehensively evaluated. Interestingly, the type of stripping solutions significantly affected the removal of ammonia, and the comparative effectiveness were in the order of H3PO4 > H2SO4 > HCOOH. However, the concentration of stripping solutions and ammonia in the feed has little impact to the performance of MCs. Among the feed solution chemistry, pH and temperature were the most crucial factors for ammonia removal in MCs, because the increase of pH and temperature enhanced the free ammonia fraction in the solution and facilitated the mass transfer through pores. At the absorbent concentration of 0.5 M H3PO4, pH of 10, and temperature of 40 °C, single-stage MCs could achieve 51% of ammonia removal within 40 s, and the ammonia removal rate in two-stage MCs reached 90% at the 1.5 min of hydraulic retention time (HRT). The results suggested the superior feasibility of multi-stage MCs system compare to the conventional stripping processes for the removal of ammonia in various waste or wastewater.


Assuntos
Amônia , Poluentes Químicos da Água , Amônia/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Temperatura , Água
12.
Water Res ; 224: 119063, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122446

RESUMO

While a variety of chemical cleaning strategies has been studied to control fouling in membrane-based water treatment processes, the removal of irreversible foulants strongly bound on membrane surfaces has not been successful. In this study, we firstly investigated the diluted aqueous solutions of ionic fluid (IF, 1-ethyl-3-methylimidazolium acetate) as a cleaning agent for three model organic foulants (humic acid, HA; bovine serum albumin, BSA; sodium alginate, SA). The real-time monitoring of cleaning progress by optical coherence tomography (OCT) showed that fouling layer was dramatically swelled by introducing IF solution and removed by shear force exerted during cleaning. This phenomenon was induced due to the pre-existing interactions between organic foulants were weakened by the intrusion of IF into the fouling layer, which was analyzed by the measurement of adhesion forces using atomic force microscopy (AFM). In the experiments with model foulants and wastewater effluent, IF was added to alkaline cleaning agents (NaOH) to verify the applicability to be supplemented in commercial cleaning agents, and resulted in the significantly enhanced control of irreversible membrane fouling. Implication of utilizing recyclable IF with negligible volatility is that environmental effects of membrane cleaning solutions could be minimized by decreasing usage of cleaning chemicals, while increasing the cleaning efficiency.


Assuntos
Águas Residuárias , Purificação da Água , Alginatos , Substâncias Húmicas , Membranas Artificiais , Osmose , Soroalbumina Bovina , Hidróxido de Sódio , Purificação da Água/métodos
13.
Bioresour Technol ; 360: 127632, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863601

RESUMO

Despite having high-rate methanogenic performance, up-flow anaerobic sludge blanket reactor still has challenges regarding long-start up period (3-8 months) for granulation. In this study, "electrical voltage (EV, 0.3 V) application" was attempted for facilitating granulation in the continuous operation with increased organic loading rates (0.5-11.0 kg COD/m3/d). Up to 11.0 kg COD/m3/d, EV-reactor exhibited the stable performance, while the control failed. After 49 days of operation (at 7 kg COD/m3/d), the granules collected from EV-reactor had larger diameter (2.3 vs 1.6 mm), higher settling velocity (2.6 vs 1.9 cm/s), and higher hydrophobicity (52.1 % vs 34.5 %), compared to the control. EV application also increased the specific methanogenic activity for propionate and hydrogen almost by two times. The relative abundance of Pseudomonas sp. (quorum sensing (QS)-related microbe) in EV-reactor was 17 % higher than that in the control. In addition, EV application increased the expression of QS genes significantly by 27 times.


Assuntos
Euryarchaeota , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Esgotos
14.
Chemosphere ; 306: 135646, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35817184

RESUMO

Among various plastic additives, di-2-ethylhexyl phthalate (DEHP) has been a great concern due to its high leaching potential and harmful effects on both human and the ecosystem. For the effective oxidation and mineralization of DEHP by ozone in the existing TiO2 catalytic processes, the heterogeneous catalyst, vanadium oxide (V2O5)-incorporated TiO2 (V2O5/TiO2), was synthesized. The generation of hydroxyl radicals was promoted by cyclic redox reactions of vanadium atoms in V2O5/TiO2 via the increase of surface oxygen vacancies by the replacement of V5+ species in the lattice of TiO2. The catalytic ozonation in the presence of V2O5/TiO2 exhibited the significantly higher degradation of DEHP with the pseudo-second-order kinetic constant of 1.7 × 105 mM-1min-1 and the removal efficiency of 58.7% after 60 s in 2 mg/L of ozone. The degradation of DEHP was initiated by the shortening of the alkyl-side chain followed by the opening of esterified benzene moieties.


Assuntos
Dietilexilftalato , Nanopartículas , Ozônio , Catálise , Ecossistema , Humanos , Óxidos/química , Ozônio/química , Ácidos Ftálicos , Titânio/química , Vanádio/química
15.
Water Res ; 215: 118268, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303557

RESUMO

This study demonstrates a simple and novel preparation method to prepare ceramic nanofiltration membranes with a precise and tunable molecular weight cut-off (MWCO) by packing variously sized nanoparticles into existing membrane pores. As a result, ceramic membranes with a MWCO from 1000 Da to 10,000 Da were successfully prepared with the narrow distribution of the pore size after the filtration-coating process. In addition, the effective porosity of the ceramic membranes was calculated from the results of the membrane properties by the Hagen-Poiseuille equation which fit within the range of the sphere packing theory from 17.3% to 41.8%. Furthermore, the results of nonlinear curve fitting between the MWCO and the nanoparticle size show a high accuracy, which implies that the MWCO of the ceramic membranes can be predicted using the curve fitting model with variously sized nanoparticles in the filtration-coating process. In conclusion, the novel filtration-coating method enables precise pore control and provides a tunable MWCO to ceramic membranes by preparing various sizes of nanoparticles.

16.
J Hazard Mater ; 430: 128488, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183829

RESUMO

In this study, bio-inspired urchin-like structured hydroxyapatite (UHdA) and its magnetic composite (UHdA@Fe3O4) were developed for efficient and easy separation of cerium ions (Ce3+) from aquatic waste streams. UHdA and UHdA@Fe3O4 exhibited superior Ce3+ adsorption capacities of 248.39 and 230.01 mg/g-UHdA respectively, compared to a commercial HdA (141.71 mg/g-HdA) due to their hierarchical mesoporous structure and large specific surface area. The adsorption of Ce3+ to UHdA and UHdA@Fe3O4 were heterogeneous, pseudo-second-order-kinetic, and the rate-limiting step was external mass transfer and intra-particle diffusion. Moreover, thermodynamic studies revealed that the adsorption process was spontaneous and endothermic nature. The high selectivity towards Ce3+ in multi-ionic systems is attributed to the strong affinity between strong Lewis acid (Ce3+) and base (PO43- and OH-) interactions. XRD, FTIR, and XPS analysis demonstrated that the adsorption was mainly attributable to the ion exchange of Ce3+ with Ca2+ and to surface complexation. The desorption of Ce3+ was efficiently accomplished using 0.1 M HNO3. The results suggest that UHdA and UHdA@Fe3O4 could be promising choices for the adsorption and recovery of rare earth elements.


Assuntos
Cério , Poluentes Químicos da Água , Adsorção , Cério/química , Durapatita , Íons , Cinética , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
17.
Water Res ; 194: 116920, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609909

RESUMO

Auto-generative high pressure digestion (AHPD) and hydrogen-injecting digestion (HID) have been introduced to directly produce high CH4-content biogas from anaerobic digester. However, each approach has its own technical difficulties (pH changes), and practical issues (high cost of H2) to obtain > 90% CH4 containing biogas, particularly, from the high-strength waste like food waste (FW). To overcome this problem, in this study, AHPD and HID were integrated, which can offset each drawback but maximize its benefit. Substrate concentration of FW tested here was 200 g COD/L, the highest ever applied in AHPD and HID studies. At first, the reactor was operated by elevating the autogenerative pressure from 1 to 3, 5, and 7 bar without H2 injection. With the pressure increase, the CH4 content in the biogas gradually increased from 52.4% at 1 bar to 77.4% at 7 bar. However, a drop of CH4 production yield (MPY) was observed at 7 bar, due to the pH drop down to 6.7 by excess CO2 dissolution. At further operation, H2 injection began at 5 bar, with increasing its amount. The injection was effective to increase the CH4 content to 82.8%, 87.2%, and 90.6% at 0.09, 0.13, and 0.18 L H2/g CODFW.fed of H2 injection amount, respectively. At 0.25 L H2/g CODFW.fed, there was a further increase of CH4 content to 92.1%, but the MPY was dropped with pH increase to 8.7 with residual H2 being detected (4% in the biogas). Microbial community analysis showed the increased abundance of piezo-tolerant microbe with pressure increase, and direct interspecies electron transfer contributors after H2 injection. In conclusion, the integration of two approaches enabled to directly produce high calorific biogas (90% > CH4, 180 MJ/m3 biogas) from high-strength FW at the lowest requirement of H2 (0.18 L H2/g CODFW.fed) ever reported.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Alimentos , Hidrogênio , Metano
18.
J Hazard Mater ; 406: 124752, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316667

RESUMO

Pseudomonas aeruginosa-encapsulated alginate/gellan gum microbeads (PAGMs) were prepared at the condition of 10 g/L alginate, 1 g/L gellan gum, and 2.57 mM calcium ions, and investigated for the biodegradation of a diesel-contaminated groundwater. The degradation of diesel with PAGMs reached 71.2% after 10days in the aerobic condition, while that of suspended bacteria was only 32.0% even after 30days. The kinetic analysis showed that PAGMs had more than two-order higher second-order kinetic constant than that of the suspended bacteria. Interestingly, the degradation of diesel was ceased due to the depletion of the dissolved oxygen after 10 day in the PAGM reactor, but the microbial degradation activity was immediately restored after the addition of oxygen to 10.5 mg/L. The change in ATP concentration and the viability of bacteria showed that the microbial activity in PAGMs were maintained (66.4%, and 84.3%, respectively) even after 30days of experiment with PAGMs due to the protective barrier of the microbeads, whereas those of suspended bacteria showed significant decrease to 6.2% and 14.4% of initial value, respectively, due to the direct contact to toxic hydrocarbons. The results suggested that encapsulation of bacterial cells could be used for the enhanced biodegradation of diesel hydrocarbons in aqueous systems.


Assuntos
Alginatos , Pseudomonas aeruginosa , Biodegradação Ambiental , Hidrocarbonetos , Cinética , Microesferas , Polissacarídeos Bacterianos
19.
J Hazard Mater ; 403: 123578, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264849

RESUMO

In this study, the impacts of gamma-irradiation from the low- and intermediate-level liquid radioactive wastewaters (LILW) to polyamide (PA) structures of nanofiltration (NF) membranes were investigated. As the gamma-irradiation increased to 300 kGy in the aqueous solution at 5 bar, both the salt rejection and the water permeability of NF membranes were decreased from 95.6 ±â€¯0.1%-74.6 ±â€¯0.5%, and from 33.7 ±â€¯0.3 LMH to 21.4 ±â€¯0.5 LMH, respectively. The surface free energy and Young's modulus of the membrane indicated the decrease in hydrophilicity and the increase in fragility of PA structure after gamma-irradiation. X-ray photoelectron spectroscopy and the streaming potential analysis exhibited that the gamma-irradiation resulted the increase in the cross-linked portion of the amide bonding from 28% to 45% due to the gamma-induced new bonding between unbound carboxylic groups and amine groups. Nuclear magnetic resonance analysis confirmed that the poly(p-phenylene) in polyamide structure were changed to poly(cyclohexane) and poly(cyclohexene) by hydrogen radical disproportionation generated from the gamma-irradiated water, and it is responsible to the increase of the cross-linked PA structures. The decrease in salt rejection and water permeability is attributed to the aging of PA structures by gamma-irradiation, thus, should be carefully monitored during the treatment of LILW using NF membrane processes.

20.
Chemosphere ; 259: 127395, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623200

RESUMO

In this work, iron (oxyhydr)oxide nanoparticle-doped expanded graphite (IO/EG-1 and IO/EG-2) was prepared via a hydrothermal reaction and applied for the phosphorus adsorption in the aqueous solutions. The analysis of scanning electron microscopy (SEM) and X-ray diffraction (XRD) verified the successful fabrication of IO/EGs, and iron (oxyhydr)oxide nanoparticles became more crystalized according to the calcination at high temperature (IO/EG-2). The maximum adsorption capacity of IO/EG-1 was considerably higher (7.30 mg/g) than that of IO/EG-2 (0.70 mg/g) mainly due to the electrostatic interaction between the negatively charged phosphate ions with iron (oxyhydr)oxides. At the neutral pH, IO/EG-1 exhibited more positively charged than IO/EG-2, which the iso-electric points (IEP) were pH of 9.1 and 6.0, respectively. The thermodynamic study also suggested that the phosphorus adsorption energy of IO/EG-1was considerably favorable (-12.13 kJ/mol) than that of IO/EG-2 (-7.43 kJ/mol). The regeneration of IO/EG-1 were efficiently achieved by a simple extraction using an alkaline solution such as NaOH. Overall, our study suggested that the prepared IO/EGs could be used as good adsorbents for the phosphorus recovery from aqueous solutions.


Assuntos
Grafite/química , Fósforo/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Ferro/química , Nanopartículas , Óxidos , Fosfatos , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...