Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38656150

RESUMO

Noncontact alignment of liquid crystals (LCs) is crucial for large-area and ultrahigh definition (UHD) display manufacturing. This research presents an innovative approach to the photoalignment of LCs, aiming to overcome challenges associated with uniformity and assembly in large-sized and UHD displays. Using homogeneously dissolved, nonionic azobenzene chromophores sensitive to both visible and UV light, we demonstrate an in situ stepwise progression of dye-induced LC alignment and subsequent stabilization using reactive mesogen (RM). Both dual-wavelength and single-wavelength approaches enable stepwise interfacial modifications for LC alignment and stabilization. The dye-induced LC alignment is rewritable, allowing for the creation of various patterns and gray-level alignments. The stability of the alignment is ensured through cross-linked RM layers, providing a robust and permanent solution for LC alignment without the need for delicate mechanical treatments. Importantly, this method addresses the challenges associated with conventional photoalignments, including various dye-induced approaches and high-energy photoalignment. The proposed method exhibits high-quality electro-optical switching, azimuthal anchoring strength, and stability against thermal, radiation, and ac-field stresses, making it a promising candidate for commercial mass production, especially in the fabrication of large-sized and UHD LC displays.

2.
Small ; 19(22): e2300309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855329

RESUMO

Photonic crystals (PC) are of great importance in technology, especially in optics and photonics. In general, the structural color of PCs responds to external stimuli primarily by changing their periodicity. Herein, the authors report on refractive index (RI) adaptive PCs. Cross-linked cholesteric films with interconnected nanopores exhibit a very low RI without light scattering. Transparent PC films with maximum reflectance in the ultravoilet (UV) region respond to various chemicals by changing the reflective color of the PC. The authors demonstrate its unique colorimetric chemical detections of hazardous organic liquids. Loading various chemicals into nanopores significantly shifts the structural color into the visible range depending on the chemical's RI. These results are unique in that the structural color of photonic films is mediated by RI changes rather than periodicity changes. In principle, nanoporous photonic crystal films can detect the RI of a chemical substance by its unique color. In contrast to volumetric changes, this sensing mechanism offers several advantages, including durability, excellent sensitivity, fast response time, and wide detection range. These results provide useful insight into stimulus-responsive PCs. The structural color of PC films can be effectively tuned by adjusting average RIs instead of changing periodicity.

3.
ACS Nano ; 16(4): 6480-6492, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343230

RESUMO

Carbon quantum dots (CQDs) have been extensively explored in diverse fields because of their exceptional features. The nanometric particles with photoluminescence (PL) benefit various optical and photonic applications. However, the majority of previous reports have mainly focused on either unpolarized or circular-polarized (CP) PL. Linearly polarized (LP) emission of CQDs is limited mainly because of their isometric shape and difficulties in macroscopic orientation control. Herein, we report syntheses of anisometric CQDs and facile control of the uniaxial orientation on a macroscopic scale, which results in linearly polarized photoluminescence (LP-PL). The anisometric CQDs are synthesized from rigid-rod-shaped precursors and evenly dispersed in the rod-like liquid crystal (LC) host. As-synthesized CQDs exhibit a PL quantum yield as high as 35% in chloroform. In addition to uniform alignment, facile directional switching of the elongated CQD is established by employing the electrical responsiveness of the CQD and host LC. Therefore, the dichroic photophysical properties of anisometric CQDs have been beneficially adopted for fabrications of polarization-sensitive and electrically switchable PL devices. Also, anisometric CQDs are embedded in polymer films with molecular orientational patterns and clearly recognized by LP-PL.

4.
ACS Appl Mater Interfaces ; 11(16): 15141-15151, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30938155

RESUMO

High-quality alignment control of liquid crystals (LCs) for ultrahigh-definition large-sized display is a challenging task. A conventional rubbing method has obvious limitations for fabricating large-sized displays with a small pixel size and an uneven inner surface. To comply with the current trend, we propose a simple and reliable polyimide-less in situ photoalignment. It was achieved using a visible-light-sensitive azo-dye and a mesogenic acrylate, both doped to host LCs. Without using a pretreated alignment layer, mono- and multidomain uniaxial alignments of LC molecules were induced by linearly polarized visible light (LPVL) and subsequently stabilized by unpolarized UV-light irradiation. The stepwise process was monitored by adopting a fluorescent indicator. By loading the mixture into a confined cell, azo-dyes were spontaneously adsorbed at inner surfaces of the cell, whereas reactive mesogens (RMs) were homogeneously dissolved in an LC host. The molecular orientational anisotropy of dyes at the surface, induced by LPVL, aligned the LC director perpendicular to the polarization direction. Upon the second step, UV-irradiation, the RMs in an LC host were photopolymerized into thin interfacial layers, stabilizing the aligned LC director. The overlaid cross-linked RM layers secured a thermal and a radiative stability of LC alignment. The RM layers completely screened the effect of azo-dyes, which can be easily randomized by heat and irradiation. The interfacial RM layer functioned as a permanently stable alignment layer. It provided sufficient azimuthal anchoring strength together with heat and light stabilities, which are essential for practical applications. Such sequential interfacial modifications through dual-wavelength processes can completely avoid interference between forming alignment and stabilization layers, inevitable if the same wavelength light is used. The proposed method provides a simple fabrication process and reliable alignment characteristics by employing effective in situ photoalignment and without using a traditional alignment layer. Therefore, it meets a current trend in the display market toward ultrahigh-resolution and large-area displays.

5.
Opt Express ; 26(7): 8385-8396, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715806

RESUMO

The surface of multilayered opal crystals resulted in homeotropic alignment of liquid crystal (LC), originated from the surface topography of opal crystals rather than a chemical nature of the nanoparticles. The polar anchoring energy (5.51 × 10-5 J/m2) of the crystal surface for nematic LC molecules was in a similar range to the conventional polyimide alignment layer (2.11 × 10-5 J/m2) used for commercial applications. The critical length scale for anchoring transition was approximately Lw = ~1 µm. If a diameter of particle d << 1 µm for opal crystals, LC molecules preferred to anchor vertically to the surface to minimize elastic free energy of bulk LCs. The LC favored a planar anchoring if d >> 1 µm. The results provide crucial insights to understand the homeotropic alignment of LCs on solid surfaces and therefore offer opportunities to develop novel materials for a vertical alignment of LCs.

6.
ACS Omega ; 2(9): 5942-5948, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457848

RESUMO

The synthesized itaconic acid-based dendritic amphiphile (Ita3C12) monomers and the methacryl polyhedral oligomeric silsesquioxane (MAPOSS) cross-linkers were directly introduced for the construction of automatic vertical alignment (auto-VA) layers in the host nematic liquid crystal (NLC) medium. The auto-VA layer can be stabilized by irradiating UV light. For the automatic fabrication of a polymer-stabilized multidomain VA (PS auto-MDVA) layer with a pretilt angle, Ita3C12 and MAPOSS were photopolymerized under the electric field by irradiating UV light on the multidomain electrode cell. Mainly because of the pretilted NLC at zero voltage, the electro-optic properties of the PS auto-MDVA cell were dramatically improved. From the morphological observations combined with surface chemical analyses, it was found that various sizes of protrusions on the solid substrates were automatically constructed by the two-step mechanisms. We demonstrated the PS auto-MDVA cell with the enhancement of electro-optic properties as a single-step process and investigated how the protrusions were automatically developed during the polymer stabilization.

7.
ACS Nano ; 10(10): 9570-9576, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27643819

RESUMO

The preparation of materials exhibiting structural colors has been intensively studied in biomimetic science and technology. Utilizing a newly synthesized cholesteric liquid-crystal (CLC) monomer (abbreviated as BP1CRM), we have prepared CLC films. Photoinitiated copolymerization of this monomer with a common achiral liquid-crystalline monomer produced free-standing films with homogeneous and nanoscale pitch distributions. Employing the thermal sensitivity of the CLC monomer, chirophotonic crystal reflectors were prepared exhibiting a range of colors. The free-standing and circular-polarizing chirophotonic crystal films maintain excellent thermal, mechanical, and chemical stabilities, and the composition can readily be applied as polarized optical films and smart paints.

8.
Nat Commun ; 6: 7936, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26242251

RESUMO

In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.

9.
Soft Matter ; 11(15): 2924-33, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25742914

RESUMO

A photochromic chiral molecule with azobenzene mesogens and a (R)-configuration naphthyl moiety (abbreviated as NCA2M) was specifically designed and synthesized for the demonstration of chameleon-like color changes responding to multitudinous external stimuli, such as temperature, light and electric field. The basic phase transition behaviors of NCA2M were first studied by the combination of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Based on the structure-sensitive X-ray diffraction results obtained at different temperatures, it was comprehended that the NCA2M molecule exhibited the tilted version of highly ordered smectic crystal phase with 5.45 nm layer thickness. Chiral nematic (N*) liquid crystals (LC) with helical superstructures were formed by doping the NCA2M photochromic chiral molecule in an achiral nematic (N) LC medium. By controlling the helical pitch length of N*-LC with respect to temperature, light and electric field, the wavelength of selectively reflected light from the N* photonic crystal was finely tuned. The light-induced color change of N*-LC film was the most efficient method for covering the whole visible region from blue to green and to red, which allowed us to fabricate remote-controllable photo-responsive devices.

10.
Opt Express ; 22(12): 15315-9, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977622

RESUMO

Conventional film patterned retarder (FPR) production requires a photo-alignment layer and a UV exposure process through a patterned wire-grid photo-mask, increasing the cost as well as limiting the resolution of FPR. We proposed a novel method for the fabrication of FPR without using the alignment layer and the photo-mask. Reactive mesogen (RM) was coated on a base film, and then the substrate with 2-domain interdigitated electrodes was contacted over the RM layer. The in-plane electric field reoriented the randomly orientated RM molecules to the field direction, generating the slow axes in each domain. Then, the UV light was exposed to the film, fixing the slow axes of the polymerized RM with orthogonal orientation between neighboring domains. Finally, an incident linearly polarized light gave rise to giving oppositely handed circular polarizations of light after passing the film.

11.
Opt Express ; 21(22): 26914-20, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216913

RESUMO

Long standing electro-optic problems of a polymer-dispersed liquid crystal (PDLC) such as low contrast ratio and transmittances decrease in oblique viewing angle have been challenged with a mixture of dual frequency liquid crystal (DFLC) and reactive mesogen (RM). The DFLC and RM molecules were vertically aligned and then photo-polymerized using a UV light. At scattering state under 50 kHz electric field, DFLC was switched to planar state, giving greater extraordinary refractive index than the normal PDLC cell. Consequently, the scattering intensity and the contrast ratio were increased compared to the conventional PDLC cell. At transparent state under 1 kHz electric field, the extraordinary refractive index of DFLC was simultaneously matched with the refractive index of vertically aligned RM so that the light scattering in oblique viewing angles was minimized, giving rise to high transmittance in all viewing angles.

12.
Nanotechnology ; 24(34): 345702, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23899443

RESUMO

The alignment of liquid crystals (LCs) on zinc oxide (ZnO) nanorods grown vertically on an indium tin oxide (ITO) layer has been investigated as an alternative alignment layer for the vertical alignment of LCs. We found that the degree of vertical alignment strongly depends on the length and density of the vertically aligned ZnO nanorods on the ITO layer and also that a uniform vertical alignment using the proposed structure can be achieved. Finally, vertically aligned LC cells with ZnO nanorods were fabricated and their electro-optical properties were evaluated and compared with those of a conventional vertically aligned LC cell with a polymer alignment layer.

13.
J Nanosci Nanotechnol ; 13(6): 4072-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862450

RESUMO

We have studied the phase behavior of blue phase liquid crystal (BPLC)-unfunctionalized nanoparticle (NP) blends. Two different types of NPs which have different anchoring properties have been studied. Interestingly, Silica NP doped BPLC blends have revealed a small but clear positive shift of the Isotropic-BP phase transition temperature for lower concentration of NPs whereas with higher percentage of NPs we have observed a mixed phase consisted with chiral nematic (N*) and BP. On the other hand, low concentration polyhedral oligomeric silsesquioxanes (POSS) NPs which have stronger anchoring force than Silica NPs have enabled BP to stabilize thermally. Our experimental results agrees with the recent theory predicted that NP-defect interaction strongly depends on the interfacial energy between NP and LC which may be responsible for the observed effects in unfunctionalized NP-BPLC composite system.

14.
Adv Mater ; 25(24): 3365-70, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23666876

RESUMO

In situ homeotropic alignment is achieved by photochromic trans- to cis-isomerization of an azo-dye doped in a nematic host. The augmented dipole moment of the cis-isomer formed under UV-irradiation expedites molecular assembly into crystalline aggregates. Subsequent deposition of the aggregates creates a roughened surface and induces an anchoring transition from the initial planar to a homeotropic alignment of the LCs.


Assuntos
Compostos Azo/química , Corantes/química , Cristais Líquidos/química , Isomerismo , Propriedades de Superfície , Compostos de Estanho/química , Raios Ultravioleta
15.
Opt Express ; 21(25): 31324-9, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514707

RESUMO

We report concurring phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals. The transitions are induced by photo-stimulation and stable against light and thermal treatments. Photochromic trans- to cis-isomerization of azo-dye induces an augmented dipole moment and strong dipole-dipole interaction of the cis-isomers, resulting in the formation of nano-sized dye-aggregates. Consequent phase separation of the aggregates of a chiral azo-dye induces phase transition from a chiral to nonchiral nematic phase. In addition, the deposition of dye-aggregates at the surfaces brings about anchoring transition of LC molecules. The stability and irreversibility of the transition, together with no need of pretreatments for LC alignment, provide fascinating opportunity for liquid crystal device applications.

16.
Opt Express ; 21(25): 31367-74, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514711

RESUMO

Photo-reactive self-assembled monolayer (PR-SAM) is employed to mediate alignment of liquid crystals (LC) and stabilize the tilt orientation of a nematic director for a vertically aligned liquid crystal. Bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces efficiently induces a homeotropic alignment and stabilizes LC director by the photo-polymerization under applied electric field. As a result, the substantial enhancement of electro-optic performance has been achieved after the PR-SAM assisted stabilization of tilt orientation of director. This approach for pretilt stabilization has multifarious advantages over the conventional PSVA.

17.
Langmuir ; 27(7): 4164-75, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21391644

RESUMO

We use optical and fluorescence microscopy, densitometry, cryo-transmission electron microscopy (cryo-TEM), spectroscopy, and synchrotron X-ray scattering to study the phase behavior of the reversible self-assembled chromonic aggregates of an anionic dye Sunset Yellow (SSY) in aqueous solutions crowded with an electrically neutral polymer polyethylene glycol (PEG) and doped with the salt NaCl. PEG causes the isotropic SSY solutions to condense into a liquid-crystalline region with a high concentration of SSY aggregates, coexisting with a PEG-rich isotropic (I) region. PEG added to the homogeneous nematic (N) phase causes separation into the coexisting N and I domains; the SSY concentration in the N domains is higher than the original concentration of PEG-free N phase. Finally, addition of PEG to the highly concentrated homogeneous N phase causes separation into the coexisting columnar hexagonal (C) phase and I phase. This behavior can be qualitatively explained by the depletion (excluded volume) effects that act at two different levels: at the level of aggregate assembly from monomers and short aggregates and at the level of interaggregate packing. We also show a strong effect of a monovalent salt NaCl on phase diagrams that is different for high and low concentrations of SSY. Upon the addition of salt, dilute I solutions of SSY show appearance of the condensed N domains, but the highly concentrated C phase transforms into a coexisting I and N domains. We suggest that the salt-induced screening of electric charges at the surface of chromonic aggregates leads to two different effects: (a) increase of the scission energy and the contour length of aggregates and (b) decrease of the persistence length of SSY aggregates.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(5 Pt 1): 051706, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20866246

RESUMO

The results of a recent investigation of the nematic biaxiality in a bent-core mesogen (A131) are in apparent disagreement with earlier claims. Samples of mesogen A131 used in the two studies were investigated with polarized optical microscopy, conoscopy, carbon-13 NMR, and crossover frequency measurements. The results demonstrate that textural changes associated with the growth of biaxial nematic order appear at ∼149 °C. The Maltese cross observed in the conoscopic figure gradually splits into two isogyres at lower temperatures indicating phase biaxiality. Presence of the uniaxial to biaxial nematic phase transition is further confirmed by temperature trends of local order parameters based on 13C chemical shifts in NMR experiments. Frequency switching measurements also clearly reveal a transition at 149 °C. Differences between the two reports appear to be related to the presence of solvent, impurities, and/or adsorbed gases in samples of A131 used in the study of Van Le [Phys. Rev. E 79, 030701 (2009)].

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(4 Pt 1): 041703, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19905321

RESUMO

The dye sunset yellow (SY) forms columnar aggregates via pi-pi stacking in aqueous solutions. These aggregates develop orientational and translational order at elevated concentrations to exhibit the nematic (N) and columnar (C) mesophases. Positional-order correlation lengths of the aggregates in the directions parallel and perpendicular to the stacking direction were measured as functions of temperature, concentration, and ionic content of solutions with synchrotron x-ray scattering in magnetically aligned samples. Average length of aggregates (i.e., the number of SY molecules in an aggregate) grows monotonically with concentration while their effective transverse separation decreases. The scission energy, E , determined from the Arrhenius thermal evolution of the longitudinal correlation length, is found to be 4.3+/-0.3 kBT and 3.5+/-0.2 kBT , in the N and C phases, respectively. Temperature and concentration dependence of E suggests that chromonic aggregation is not an isodesmic process. The aggregate length decreases with decreasing pH when HCl is added to the solution.

20.
Biophys J ; 96(6): 2204-15, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19289047

RESUMO

Ceramide-1-phosphate, the phosphorylated form of ceramide, gained attention recently due to its diverse intracellular roles, in particular in inflammation mediated by cPLA(2)alpha. However, surprisingly little is known about the physical chemical properties of this lipid and its potential impact on physiological function. For example, the presence of Ca(2+) is indispensable for the interaction of Cer-1-P with the C2 domain of cPLA(2)alpha. We report on the structure and morphology of Cer-1-P in monomolecular layers at the air/water solution interface in the absence and presence of Ca(2+) using diverse biophysical techniques, including synchrotron x-ray reflectivity and grazing angle diffraction, to gain insight into the role and function of Cer-1-P in biomembranes. We show that relatively small changes in pH and the presence of monovalent cations dramatically affect the behavior of Cer-1-P. On pure water Cer-1-P forms a solid monolayer despite the negative charge of the phosphomonoester headgroup. In contrast, pH 7.2 buffer yields a considerably less solid-like monolayer, indicating that charge-charge repulsion becomes important at higher pH. Calcium was found to bind strongly to the headgroup of Cer-1-P even in the presence of a 100-fold larger Na(+) concentration. Analysis of the x-ray reflectivity data allowed us to estimate how much Ca(2+) is bound to the headgroup, approximately 0.5 Ca(2+) and approximately 1.0 Ca(2+) ions per Cer-1-P molecule for the water and buffer subphase respectively. These results can be qualitatively understood based on the molecular structure of Cer-1-P and the electrostatic/hydrogen-bond interactions of its phosphomonoester headgroup. Biological implications of our results are also discussed.


Assuntos
Cálcio/química , Ceramidas/química , Ar , Algoritmos , Elasticidade , Concentração de Íons de Hidrogênio , Pressão , Espalhamento de Radiação , Sódio/química , Síncrotrons , Água/química , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...