Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37050745

RESUMO

This study presents a glucose biosensor based on electrospun core-sheath nanofibers. Two types of film were fabricated using different electrospinning procedures. Film F1 was composed solely of core-sheath nanofibers fabricated using a modified coaxial electrospinning process. Film F2 was a double-layer hybrid film fabricated through a sequential electrospinning and blending process. The bottom layer of F2 comprised core-sheath nanofibers fabricated using a modified process, in which pure polymethacrylate type A (Eudragit L100) was used as the core section and water-soluble lignin (WSL) and phenol were loaded as the sheath section. The top layer of F2 contained glucose oxidase (GOx) and gold nanoparticles, which were distributed throughout the polyvinylpyrrolidone K90 (PVP K90) nanofibers through a single-fluid blending electrospinning process. The study investigated the sequential electrospinning process in detail. The experimental results demonstrated that the F2 hybrid film had a higher degradation efficiency of ß-D-glucose than F1, reaching a maximum of over 70% after 12 h within the concentration range of 10-40 mmol/L. The hybrid film F2 is used for colorimetric sensing of ß-D-glucose in the range of 1-15 mmol/L. The solution exhibited a color that deepened gradually with an increase in ß-D-glucose concentration. Electrospinning is flexible in creating structures for bio-cascade reactions, and the double-layer hybrid film can provide a simple template for developing other sensing nanomaterials.


Assuntos
Nanopartículas Metálicas , Nanofibras , Ouro , Povidona/química , Filmes Cinematográficos , Nanofibras/química
2.
Colloids Surf B Biointerfaces ; 201: 111629, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33639514

RESUMO

The reasonable selection and elaborate conversion of raw materials into desired functional products represent a main topic in modern material engineering. In this study, zein (a plant protein) and lipids (extracted from egg yolk) are converted into a new type of drug-polymer@lipid hybrid nanoparticles (HNPs) via modified coaxial electrospraying. Tamoxifen citrate (TC) is used as a model anticancer drug to prepare TC-zein monolithic nanocomposites (MNCs) via traditional blended electrospraying; these MNCs are then used for comparison. Modified coaxial electrospraying is a continuous and robust process for the preparation of solid particles because of the action of unsolidifiable shell lipid solutions. HNPs have a round morphology with clear core-shell nanostructures, whereas MNCs have an indented flat morphology. Although both hold the drug in an amorphous state because of the fine compatibility of TC and zein, HNPs demonstrate a better sustained release of TC compared with MNCs in terms of retarding initial burst release (6.7 %±2.9 % vs. 37.2 %±4.3 %) and prolonged linear release period (20.47 h vs. 4.97 h for releasing 90 % of the loaded drug). Mechanisms by which the shell's lipid layer adjusts the release behavior of TC molecules are proposed. The present protocol based on coaxial electrospraying shows a new strategy of combining edible protein and lipids to fabricate advanced functional nanomaterials.


Assuntos
Nanopartículas , Zeína , Portadores de Fármacos , Liberação Controlada de Fármacos , Lipídeos , Tamanho da Partícula
3.
Int J Pharm ; 596: 120203, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497703

RESUMO

In nature, the combination of composition, structure, and shape determines the matter's functional performance to a large extent. Inspired by which, two electrospun Janus nanofiber formulations were created using side-by-side electrospinning in this work. Tamoxifen citrate (TAM) was used as a model drug and ethyl cellulose (EC) and polyvinylpyrrolidone K60 (PVP) as the polymer carrier matrices. The fibers have linear cylindrical morphologies and distinct Janus structures by scanning electron microscopy. One side of the fibers took a round shape, while the other was crescent-shaped. The drug was present in both polymer matrices in the form of amorphous solid dispersions, owing to strong intermolecular interactions between drug and polymer. In vitro dissolution tests demonstrated that both sets of fibers could provide biphasic drug release due to the difference in solubility of PVP and EC. The different shape of TAM-EC and TAM-PVP side of the Janus structure resulted in a considerable variation in the drug release profiles. The Janus structure with crescent TAM-PVP side and round TAM-EC side gave a more rapid burst release in the first phase of release, and slower sustained release in the second phase. This work thus reports a new strategy for systematically developing advanced functional nanomaterials based on both shape- and structure-performance relationships.


Assuntos
Nanofibras , Composição de Medicamentos , Liberação Controlada de Fármacos , Polímeros , Solubilidade
4.
Polymers (Basel) ; 13(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440744

RESUMO

As a new kind of water pollutant, antibiotics have encouraged researchers to develop new treatment technologies. Electrospun fiber membrane shows excellent benefits in antibiotic removal in water due to its advantages of large specific surface area, high porosity, good connectivity, easy surface modification and new functions. This review introduces the four aspects of electrospinning technology, namely, initial development history, working principle, influencing factors and process types. The preparation technologies of electrospun functional fiber membranes are then summarized. Finally, recent studies about antibiotic removal by electrospun functional fiber membrane are reviewed from three aspects, namely, adsorption, photocatalysis and biodegradation. Future research demand is also recommended.

5.
Polymers (Basel) ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092310

RESUMO

Although electrospun nanofibers are expanding their potential commercial applications in various fields, the issue of energy savings, which are important for cost reduction and technological feasibility, has received little attention to date. In this study, a concentric spinneret with a solid Teflon-core rod was developed to implement an energy-saving electrospinning process. Ketoprofen and polyvinylpyrrolidone (PVP) were used as a model of a poorly water-soluble drug and a filament-forming matrix, respectively, to obtain nanofibrous films via traditional tube-based electrospinning and the proposed solid rod-based electrospinning method. The functional performances of the films were compared through in vitro drug dissolution experiments and ex vivo sublingual drug permeation tests. Results demonstrated that both types of nanofibrous films do not significantly differ in terms of medical applications. However, the new process required only 53.9% of the energy consumed by the traditional method. This achievement was realized by the introduction of several engineering improvements based on applied surface modifications, such as a less energy dispersive air-epoxy resin surface of the spinneret, a free liquid guiding without backward capillary force of the Teflon-core rod, and a smaller fluid-Teflon adhesive force. Other non-conductive materials could be explored to develop new spinnerets offering good engineering control and energy savings to obtain low-cost electrospun polymeric nanofibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA