Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1742, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453921

RESUMO

Super Typhoon Mangkhut, which traversed the North Equatorial Current (NEC; 8-17 °N) in the western North Pacific in 2018, was the most intense Category-5 tropical cyclone (TC) with the longest duration in history-3.5 days. Here we show that the combination of two factors-high ocean heat content (OHC) and increased stratification - makes the NEC region the most favored area for a rapid intensification (RI) of super typhoons, instead of the Eddy Rich Zone (17-25 °N), which was considered the most relevant for RI occurrence. The high OHC results from a northward deepening thermocline in geostrophic balance with the westward-flowing NEC. The stratification is derived from precipitation associated with the Inter-Tropical Convergence Zone in the summer peak typhoon season. These factors, which are increasingly significant over the past four decades, impede the TC-induced sea surface cooling, thus enhancing RI of TCs and simultaneously maintaining super typhoons over the NEC region.

2.
Sci Rep ; 9(1): 9955, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289374

RESUMO

Near-inertial waves (NIWs), which have clockwise (anticlockwise) rotational motion in the Northern (Southern) Hemisphere, exist everywhere in the ocean except at the equator; their frequencies are largely determined by the local inertial frequency, f. It is thought that they supply about 25% of the energy for global ocean mixing through turbulence resulting from their strong current shear and breaking; this contributes mainly to upper-ocean mixing which is related to air-sea interaction, typhoon genesis, marine ecosystem, carbon cycle, and climate change. Observations and numerical simulations have shown that the low-mode NIWs can travel many hundreds of kilometres from a source region toward the equator because the lower inertial frequency at lower latitudes allows their free propagation. Here, using observations and a numerical simulation, we demonstrate poleward propagation of typhoon-induced NIWs by a western boundary current, the Kuroshio. Negative relative vorticity, meaning anticyclonic rotational tendency opposite to the Earth's spin, existing along the right-hand side of the Kuroshio path, makes the local inertial frequency shift to a lower value, thereby trapping the waves. This negative vorticity region works like a waveguide for NIW propagation, and the strong Kuroshio current advects the waves poleward with a speed ~85% of the local current. This finding emphasizes that background currents such as the Kuroshio and the Gulf Stream play a significant role in redistribution of the NIW energy available for global ocean mixing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA