Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38798404

RESUMO

The repertory of neurons generated by progenitor cells depends on their location along antero-posterior and dorso-ventral axes of the neural tube. To understand if recreating those axes was sufficient to specify human brain neuronal diversity, we designed a mesofluidic device termed Duo-MAPS to expose induced pluripotent stem cells (iPSC) to concomitant orthogonal gradients of a posteriorizing and a ventralizing morphogen, activating WNT and SHH signaling, respectively. Comparison of single cell transcriptomes with fetal human brain revealed that Duo-MAPS-patterned organoids generated the major neuronal lineages of the forebrain, midbrain, and hindbrain. Morphogens crosstalk translated into early patterns of gene expression programs predicting the generation of specific brain lineages. Human iPSC lines from six different genetic backgrounds showed substantial differences in response to morphogens, suggesting that interindividual genomic and epigenomic variations could impact brain lineages formation. Morphogen gradients promise to be a key approach to model the brain in its entirety.

2.
Am J Pathol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38548268

RESUMO

Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical to maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role that PCs play in signaling microvascular dysfunction remains underexplored. It is hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Using pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor ß1 (TGF-ß1)], human PC inflammatory and fibrotic phenotypes were evaluated by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-ß1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-ß1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-ß1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.

3.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376371

RESUMO

Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.


Blood vessels are vital for transporting blood containing oxygen, nutrients and waste around the body. To maintain this function, new blood vessels are continually formed through a process called angiogenesis. Often triggered in areas requiring oxygen, new blood vessels form from existing vessels as 'sprouts' in response to elevated levels of a signaling molecule called vascular endothelial growth factor (or VEGF for short). For 'sprouting' to occur, endothelial cells lining the parental blood vessel must become either 'Tip' or 'Stalk' cells. Tip cells lead the extension of the blood vessel sprouts, while Stalk cells proliferate rapidly, ensuring the growth of the sprout. Correct spatial arrangement of these different cell types is crucial for the development of functional blood vessels. Previous work has shown that VEGF promotes differentiation of endothelial cells lining blood vessels into different cell types. In neighboring cells, a signaling pathway known as NOTCH is activated due to interactions between adjacent cells, promoting differentiation of Tip cells and Stalk cells. Ideally, Tip cells are spaced out by intervals of Stalk cells to allow separate sprouts to form. Throughout this process, a single cell can receive contradictory signals, with VEGF promoting Tip cell formation and NOTCH signaling promoting Stalk cell differentiation. It remained unclear how the right cells are formed in the right places when surrounded by these conflicting inputs. To better understand these dynamics Kang, Bocci et al. combined a laboratory model of angiogenesis with mathematical modelling. Experiments using these approaches showed that the overall pattern of cell type specification induced by VEGF and NOTCH signaling is consistent with so-called order-disorder transition, commonly observed in crystals in other ordered structures. For blood vessel cells, this transition means that they can still robustly take on either the Tip or Stalk cell identities, but this fate selection is not stable in time. Additionally, the overall pattern is much more sensitive to additional cues and self-organization mechanisms. Further analysis revealed that one such cue can be local fluctuations the density of fibronectin, a key pro-angiogenic extracellular component, leading to formation of sprouts that tend to distance themselves as much as possible from other fully formed sprouts. These findings provide a framework for understanding NOTCH-mediated patterning processes in the context of responding to a variety of environmental cues. This sensitivity in cell type specification is important for determining the dynamic nature of the initial steps of angiogenesis and may be crucial for understanding growth of new blood vessels in damaged organs, cancer and other diseases.


Assuntos
Células Endoteliais , Transdução de Sinais , Comunicação Celular , Morfogênese , Diferenciação Celular
4.
Biomater Sci ; 11(2): 554-566, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36472228

RESUMO

Hybrid ionomer cements (HICs) are aesthetic polyelectrolyte cements that have been modified with a resin. The setting of HICs occurs by both monomer polymerization and an acid-base reaction. In addition, HICs contain a resin, which is substituted for water. Thus, the competition between the setting reactions and reduced water content inherently limits polysalt formation and, consequently the bioactive interactions. In this study, we explored the effects of polybetaine zwitterionic derivatives (mZMs) on the augmentation of the bioactive response of HICs. The polybetaines were homogenized into an HIC in different proportions (α, ß, and γ) at 3% w/v. Following basic characterization, the bioactive response of human dental pulp stem cells (hDPSCs) was evaluated. The augmented release of the principal constituent ions (strontium, silica, and fluoride) from the HIC was observed with the addition of the mZMs. Modification with α-mZM elicited the most favorable bioactive response, namely, increased ion elution, in vitro calcium phosphate precipitation, and excellent biofouling resistance, which deterred the growth of the bridging species of Veillonella. Moreover, α-mZM resulted in a significant increase in the hDPSC response, as confirmed by a significant increase (p < 0.05) in alizarin red staining. The results of mRNA expression tests, performed using periodically refreshed media, showed increased and early peak expression levels for RUNX2, OCN, and OPN in the case of α-mZM. Based on the results of the in vitro experiments, it can be concluded that modification of HICs with polybetaine α-mZM can augment the overall biological response.


Assuntos
Fluoretos , Cimentos de Ionômeros de Vidro , Humanos , Cimentos Ósseos , Teste de Materiais
5.
Bioact Mater ; 14: 219-233, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35310353

RESUMO

Polyalkenoate cement (PAC) is a promising material for regenerative hard tissue therapy. The ionically rich glass component of PAC encourages bioactive interaction via. the release of essential ions. However, PAC bioactivity is restricted owing to (i) structurally inherent cationic network formers and (ii) surface bacterial biofilm formation. These two factors cause a deficiency in ion release, further complicated by secondary infections and premature therapeutic failure. Here, a multivalent zwitterionic network modifier (mZM) is presented for upregulation of ionic exchange and bioactivity enhancement. By introducing a non-zero charged mZM into PACs, an increase in the proportion of non-bridging oxygen occurs. The network modification promotes ion channel formation, causing a multiple-fold increase in ion release and surface deposition of hydroxy-carbonate apatite (ca. 74%). Experiments ex vivo and animal models also demonstrate the efficient remineralization ability of the mZM. Furthermore, divalent cationic interaction results in bacterial biofilm reduction (ca. 68%) while also influencing a shift in the biofilm species composition, which favors commensal growth. Therefore, PAC modification with mZM offers a promising solution for upregulation of bioactivity, even aiding in customization by targeting site-specific regenerative therapy in future applications.

6.
Elife ; 112022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35199643

RESUMO

Kinase activity in signaling networks frequently depends on regulatory subunits that can both inhibit activity by interacting with the catalytic subunits and target the kinase to distinct molecular partners and subcellular compartments. Here, using a new synthetic molecular interaction system, we show that translocation of a regulatory subunit of the protein kinase A (PKA-R) to the plasma membrane has a paradoxical effect on the membrane kinase activity. It can both enhance it at lower translocation levels, even in the absence of signaling inputs, and inhibit it at higher translocation levels, suggesting its role as a linker that can both couple and decouple signaling processes in a concentration-dependent manner. We further demonstrate that superposition of gradients of PKA-R abundance across single cells can control the directionality of cell migration, reversing it at high enough input levels. Thus, complex in vivo patterns of PKA-R localization can drive complex phenotypes, including cell migration.


Assuntos
Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Movimento Celular , Polaridade Celular , AMP Cíclico/metabolismo , Células HeLa , Humanos , Fosforilação , Transporte Proteico , Transdução de Sinais , Sirolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
7.
Materials (Basel) ; 14(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808262

RESUMO

Commercial mineral trioxide aggregate (MTA) materials such as Endocem MTA (EC), Dia-Root Bio MTA (DR), RetroMTA (RM), and ProRoot MTA (PR) are increasingly used as root-end filling materials. The aim of this study was to assess and compare the physicochemical and mechanical properties and cytotoxicity of these MTAs. The film thicknesses of EC and DR were considerably less than that of PR; however, RM's film thickness was greater than that of PR. In addition, the setting times of EC, DR, and RM were shorter than that of PR (p < 0.05). The solubility was not significantly different among all groups. The three relatively new MTA groups (EC, DR, and RM) exhibited a significant difference in pH variation and calcium ion release relative to the PR group (p < 0.05). The radiopacity of the three new MTAs was considerably less than that of PR. The mechanical strength of RM was not significantly different from that of PR (p > 0.05); however, the EC and DR groups were not as strong as PR (p < 0.05). All MTA groups revealed cytocompatibility. In conclusion, the results of this study confirmed that EC, RM, DR, and PR exhibit clinically acceptable physicochemical and mechanical properties and cell cytotoxicity.

8.
J Biomed Mater Res A ; 109(7): 1196-1208, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33012133

RESUMO

In this study, mechanical properties of bioactive glass (BAG) synthetic bone graft substitute was improved by containing ZrO2 (ZrO2 -BAG), while maintaining advantageous biological properties of BAG such as osteoinductive and osteoconductive properties. The ZrO2 -BAG was produced by adding ZrO2 in the following proportions to replace Na2 O in 45S5 BAG: 1% (Zr1-BAG), 3% (Zr3-BAG), 6% (Zr6-BAG), and 12% (Zr12-BAG). Properties including XRD, XPS, SEM, DSC, fracture toughness, and Vickers microhardness were evaluated. To assess the biological properties, Ca/P apatite formation, ion release, degradation rate, cell proliferation, ALP activity (ALP), and alizarin red S staining assay (ARS) were evaluated. Also, expression of osteogenic differentiation markers, Osteopontin (OPN), confirmed by immunofluorescence staining. Finally, an in vivo test was carried out to by implanting ZrO2 -BAG into the subcutaneous tissue of rats. The results of each test were statistically analyzed with one-way ANOVA followed by Tukey's post hoc statistical test. Amorphous ZrO2 -BAG was successfully produced with increased mechanical properties as the ZrO2 content was increased. Additionally, ZrO2 -BAG exhibited a slower ion release and degradation rate compare to BAG without ZrO2 . Bioactivity of ZrO2 -BAG was confirmed with apatite layer formed on the surface, significantly higher proliferation rate and significantly enhanced ALP and the degree of ARS of the cells compare to respective controls. The tissue reactions observed in the in vivo study showed neo-formed vessels after implantation of ZrO2 -BAG.


Assuntos
Substitutos Ósseos/química , Cerâmica/química , Vidro/química , Zircônio/química , Células 3T3 , Animais , Substitutos Ósseos/farmacologia , Cerâmica/farmacologia , Feminino , Teste de Materiais , Camundongos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Zircônio/farmacologia
9.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198074

RESUMO

Despite numerous advantages of using porous hydroxyapatite (HAp) scaffolds in bone regeneration, the material is limited in terms of osteoinduction. In this study, the porous scaffold made from nanosized HAp was coated with different concentrations of osteoinductive aqueous methylsulfonylmethane (MSM) solution (2.5, 5, 10, and 20%) and the corresponding MH scaffolds were referred to as MH2.5, MH5, MH10, and MH20, respectively. The results showed that all MH scaffolds resulted in burst release of MSM for up to 7 d. Cellular experiments were conducted using MC3T3-E1 preosteoblast cells, which showed no significant difference between the MH2.5 scaffold and the control with respect to the rate of cell proliferation (p > 0.05). There was no significant difference between each group at day 4 for alkaline phosphatase (ALP) activity, though the MH2.5 group showed higher level of activity than other groups at day 10. Calcium deposition, using alizarin red staining, showed that cell mineralization was significantly higher in the MH2.5 scaffold than that in the HAp scaffold (p < 0.0001). This study indicated that the MH2.5 scaffold has potential for both osteoinduction and osteoconduction in bone regeneration.


Assuntos
Dimetil Sulfóxido/farmacologia , Durapatita/farmacologia , Osteogênese/efeitos dos fármacos , Sulfonas/farmacologia , Alicerces Teciduais/química , Células 3T3 , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Porosidade , Engenharia Tecidual/métodos
10.
Materials (Basel) ; 12(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744164

RESUMO

The purpose of this study was to evaluate the change in the retentive forces of four different titanium-based implant attachment systems during the simulation of insert-removal cycles in an artificial oral environment. Five types of titanium-based dental implant attachment systems (Locator, Kerator, O-ring, EZ-Lock, and Magnetic) were studied (n = 10). The specimens underwent insert-removal cycles in artificial saliva, and the retentive force was measured following 0, 750, 1500, and 2250 cycles. Significant retention loss was observed in all attachment systems, except the magnetic attachments, upon completion of 2250 insertion and removal cycles, compared to the initial retentive force (p < 0.05). A comparison of the initial retentive forces revealed the highest value for Locator, followed by the Kerator, O-ring, EZ-Lock, and Magnetic attachments. Furthermore, Kerator demonstrated the highest retentive loss, followed by Locator, O-ring, EZ-Lock, and Magnetic attachments after 2250 cycles (p < 0.05). In addition, the Locator and Kerator systems revealed significant decrease in retentive forces at all measurement points (p < 0.05). The retention force according to the insert-removal cycles were significantly different according to the types of dental implant attachment systems.

11.
Proc Natl Acad Sci U S A ; 116(47): 23551-23561, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685607

RESUMO

Angiogenesis frequently occurs in the context of acute or persistent inflammation. The complex interplay of proinflammatory and proangiogenic cues is only partially understood. Using an experimental model, permitting exposure of developing blood vessel sprouts to multiple combinations of diverse biochemical stimuli and juxtacrine cell interactions, we present evidence that a proinflammatory cytokine, tumor necrosis factor (TNF), can have both proangiogenic and antiangiogenic effects, depending on the dose and the presence of pericytes. In particular, we find that pericytes can rescue and enhance angiogenesis in the presence of otherwise-inhibitory high TNF doses. This sharp switch from proangiogenic to antiangiogenic effect of TNF observed with an escalating dose of this cytokine, as well as the effect of pericytes, are explained by a mathematical model trained on the biochemical data. Furthermore, this model was predictive of the effects of diverse combinations of proinflammatory and antiinflammatory cues, and variable pericyte coverage. The mechanism supports the effect of TNF and pericytes as modulating signaling networks impinging on Notch signaling and specification of the Tip and Stalk phenotypes. This integrative analysis elucidates the plasticity of the angiogenic morphogenesis in the presence of diverse and potentially conflicting cues, with immediate implications for many physiological and pathological settings.


Assuntos
Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Pericitos/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Comunicação Celular , Técnicas de Cultura de Células , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Lisofosfolipídeos/farmacologia , Modelos Biológicos , Neovascularização Patológica/patologia , Pericitos/efeitos dos fármacos , Receptores Notch/fisiologia , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Engenharia Tecidual , Fator de Necrose Tumoral alfa/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
12.
J Vis Exp ; (147)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31180367

RESUMO

Various limitations of 2D cell culture systems have sparked interest in 3D cell culture and analysis platforms, which would better mimic the spatial and chemical complexity of living tissues and mimic in vivo tissue functions. Recent advances in microfabrication technologies have facilitated the development of 3D in vitro environments in which cells can be integrated into a well-defined extracellular matrix (ECM) and a defined set of soluble or matrix associated biomolecules. However, technological barriers have limited their widespread use in research laboratories. Here, we describe a method to construct simple devices for 3D culture and experimentation with cells and multicellular organoids in 3D microenvironments with a defined chemoattractant gradient. We illustrate the use of this platform for analysis of the response of epithelial cells and organoids to gradients of growth factors, such as epidermal growth factor (EGF). EGF gradients were stable in the devices for several days leading to directed branch formation in breast organoids. This analysis allowed us to conclude that collective gradient sensing by groups of cells is more sensitive vs. single cells. We also describe the fabrication method, which does not require photolithography facilities nor advanced soft lithography techniques. This method will be helpful to study 3D cellular behaviors in the context of the analysis of development and pathological states, including cancer.


Assuntos
Matriz Extracelular/metabolismo , Imageamento Tridimensional/métodos , Receptores de Formil Peptídeo/fisiologia , Animais , Humanos , Camundongos
13.
PLoS One ; 11(5): e0156529, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27228079

RESUMO

We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture.


Assuntos
Materiais Biomiméticos , Vasos Sanguíneos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Modelos Cardiovasculares , Engenharia Tecidual/métodos , Animais , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
14.
Biofabrication ; 7(1): 015007, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25599716

RESUMO

The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and pre-endothelization using a recombinant mussel adhesive protein fused with arginine-glycine-aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH (patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks.


Assuntos
Prótese Vascular , Células Progenitoras Endoteliais/citologia , Endotélio Vascular/fisiologia , Oligopeptídeos/farmacologia , Proteínas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Adulto , Animais , Separação Celular , Colágeno/farmacologia , Módulo de Elasticidade/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Imunofluorescência , Humanos , Hiperplasia , Implantes Experimentais , Masculino , Teste de Materiais , Perfusão , Poliésteres/farmacologia , Porosidade , Coelhos , Cloreto de Sódio/farmacologia , Resistência à Tração/efeitos dos fármacos , Alicerces Teciduais/química
15.
J Biomech Eng ; 135(8): 84501, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23719774

RESUMO

In scaffold-based tissue engineering, sufficient oxygen and nutrient supply into cells within a scaffold is essential to increase cell viability and the proliferation rate. Generally, oxygen and nutrients reach the cells through the media by diffusion in vitro or in vivo, assuming there is no convection flow through a scaffold with small-sized pores. The scaffold diffusion rate depends mainly on the scaffold pore architecture. Thus, understanding the effect of scaffold pore architecture on the diffusion mechanism is necessary to design an efficient scaffold model. This study proposes a computational method to estimate diffusivity using the finite element analysis (FEA). This method can be applied to evaluate and analyze the effective diffusivity of a freeform fabricated 3D scaffold. The diffusion application module of commercial FEA software was used to calculate the spatial oxygen concentration gradient in a scaffold model medium. The effective diffusivities of each scaffold could be calculated from the oxygen concentration data, which revealed that the scaffold pore architecture influences its effective diffusivity. The proposed method has been verified experimentally and can be applied to design pore architectures with efficient diffusion by increasing our understanding of how the diffusion rate within a scaffold is affected by its pore architecture.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Fenômenos Biomecânicos , Simulação por Computador , Difusão , Análise de Elementos Finitos , Modelos Biológicos , Oxigênio
16.
Acta Biomater ; 9(1): 4716-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22947325

RESUMO

Large tissue regeneration remains problematic because of a lack of oxygen and nutrient supply. An attempt to meet the metabolic needs of cells has been made by preforming branched vascular networks within a scaffold to act as channels for mass transport. When constructing functional vascular networks with channel patency, emphasis should be placed on anti-thrombogenic surface issues. The aim of this study was to develop a rapid endothelialization method for creating an anti-thrombogenic surface mimicking the natural vessel wall in the artificial vascular networks. Shear stress preconditioning and scaffold surface modification were investigated as effective approaches for promoting biomaterial endothelialization. We found that a transient increase in shear stress at the appropriate time is key to enhancing endothelialization. Moreover, surface modification with bioactive materials such as collagen and recombinant mussel adhesive protein fused with arginine-glycine-aspartic acid peptide (MAP-RGD) showed a synergetic effect with shear stress preconditioning. Platelet adhesion tests demonstrated the anti-thrombogenic potential of MAP-RGD itself without endothelialization. The rapid endothelialization method established in this study can be easily applied to preformed artificial vascular networks in porous scaffolds. Development of artificial vascular networks with an anti-thrombogenic luminal surface will open up a new chapter in tissue engineering and regenerative medicine.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Endotélio Vascular/crescimento & desenvolvimento , Engenharia Tecidual , Alicerces Teciduais , Sequência de Bases , Reatores Biológicos , Plaquetas/citologia , Vasos Sanguíneos/citologia , Adesão Celular , Primers do DNA , Endotélio Vascular/citologia , Humanos , Microscopia Eletrônica de Varredura
17.
Langmuir ; 29(2): 701-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23234496

RESUMO

Oxygen and nutrients cannot be delivered to cells residing in the interior of large-volume scaffolds via diffusion alone. Several efforts have been made to meet the metabolic needs of cells in a scaffold by constructing mass transport channels, particularly in the form of bifurcated networks. In contrast to progress in fabrication technologies, however, an approach to designing an optimal network based on experimental evaluation has not been actively reported. The main objective of this study was to establish a procedure for designing an effective microfluidic network system for a cell-seeded scaffold and to develop an experimental model to evaluate the design. We proposed a process to design a microfluidic network by combining an oxygen transport simulation with biomimetic principles governing biological vascular trees. The simulation was performed with the effective diffusion coefficient (D(e,s)), which was experimentally measured in our previous study. Porous scaffolds containing an embedded microfluidic network were fabricated using the lost mold shape-forming process and salt leaching method. The reliability of the procedure was demonstrated by experiments using the scaffolds. This approach established a practical basis for designing an effective microfluidic network in a cell-seeded scaffold.


Assuntos
Desenho de Equipamento/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Oxigênio/metabolismo , Alicerces Teciduais , Animais , Transporte Biológico , Técnicas de Cultura de Células , Hipóxia Celular , Proliferação de Células , Difusão , Desenho de Equipamento/métodos , Cinética , Camundongos , Modelos Químicos , Células NIH 3T3 , Porosidade , Engenharia Tecidual
18.
Biofabrication ; 4(1): 015005, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22361671

RESUMO

Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering.


Assuntos
Desenho Assistido por Computador , Engenharia Tecidual/métodos , Alicerces Teciduais , Algoritmos , Humanos , Modelos Anatômicos , Porosidade , Coluna Vertebral/anatomia & histologia , Propriedades de Superfície , Dente/anatomia & histologia
19.
Acta Biomater ; 7(9): 3345-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21642022

RESUMO

An adequate oxygen supply is one of the most important factors needed in order to regenerate or engineer thick tissues or complex organs. To devise a method for maximizing the amount of oxygen available to cells, it is necessary to understand and to realistically predict oxygen transport within an engineered tissue. In this study, we focused on the fact that oxygen transport through a tissue-engineered scaffold may vary with time as cells proliferate. To confirm this viewpoint, effective oxygen diffusion coefficients (D(e)(,)(s)) of scaffolds were deduced from experimental measurements and simulations of oxygen-concentration profiles were performed using these D(e)(,)(s) values in a two-dimensional (2-D) perfusion model. The results of this study indicate that higher porosity, hydraulic permeability and interconnectivity of scaffolds with no cells are responsible for the prominent diffusion capability quantified using D(e)(,)(s). On the other hand, the D(e)(,)(s) of scaffolds with cells has a negative linear relationship with cell density. Cell proliferation with time leads to a significant decrease in oxygen concentration in the 2-D perfusion model. This result demonstrates the gradual restriction of oxygen transport in a porous scaffold during cell culture. Therefore, the realistic prediction of oxygen transport using a time-varying D(e)(,)(s) will provide an appropriate basis for designing optimal transport networks within a thick scaffold.


Assuntos
Oxigênio/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Transporte Biológico , Proliferação de Células , Camundongos , Microscopia Eletrônica de Varredura , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...