Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2374, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185269

RESUMO

Power efficiency of photovoltaic cell is significantly affected by the cell temperature. Here, a self-recovering passive cooling unit is developed. The water-saturated zeolite 13X is coated on the back side of photovoltaic cell, and ammonium nitrate is dispersed as a layer to form a thin film. When heat is supplied, water is desorbed from zeolite 13X (latent cooling), and dissolves ammonium nitrate to induce endothermic reaction cooling. It is a reversible process that recovers itself at night. The unit works on the basis that the water sorption performance of porous materials is inversely proportional to temperature, and the solubility of endothermic reaction pairs increases proportionally with temperature. The average temperature of photovoltaic cell can be reduced by 15.1 °C, and the cooling energy density reaches 2,876 kJ/kg with average cooling power of 403 W/m2. We show that highly efficient passive cooling comprising inexpensive materials for photovoltaic cell could be achieved.

2.
Langmuir ; 33(43): 12016-12027, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28982237

RESUMO

The movement of a single air bubble on an inclined hydrophobic surface submerged in water, including both the upward- and downward-facing sides of the surface, was investigated. A planar Teflon sheet with an apparent contact angle of a sessile water droplet of 106° was used as a hydrophobic surface. The volume of a bubble and the inclination angle of a Teflon sheet varied in the ranges 5-40 µL and 0-45°, respectively. The effects of the bubble volume on the adhesion and dynamics of the bubble were studied experimentally on the facing-up and facing-down surfaces of the submerged hydrophobic Teflon sheet, respectively, and compared. The result shows that the sliding angle has an inverse relationship with the bubble volume for both the upward- and downward-facing surfaces. However, at the same given volume, the bubble on the downward-facing surface spreads over a larger area of the hydrophobic surface than the upward-facing surface due to the greater hydrostatic pressure acting on the bubble on the downward-facing surface. This makes the lateral adhesion force of the bubble greater and requires a larger inclination angle to result in sliding.

3.
Nanotechnology ; 25(16): 165301, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24670779

RESUMO

In this paper, we introduce a simple fabrication technique which can pattern high-aspect-ratio polymer nanowire structures of photoresist films by using a maskless one-step oxygen plasma etching process. When carbon-based photoresist materials on silicon substrates are etched by oxygen plasma in a metallic etching chamber, nanoparticles such as antimony, aluminum, fluorine, silicon or their compound materials are self-generated and densely occupy the photoresist polymer surface. Such self-masking effects result in the formation of high-aspect-ratio vertical nanowire arrays of the polymer in the reactive ion etching mode without the necessity of any artificial etch mask. Nanowires fabricated by this technique have a diameter of less than 50 nm and an aspect ratio greater than 20. When such nanowires are fabricated on lithographically pre-patterned photoresist films, hierarchical and hybrid nanostructures of polymer are also conveniently attained. This simple and high-throughput fabrication technique for polymer nanostructures should pave the way to a wide range of applications such as in sensors, energy storage, optical devices and microfluidics systems.

4.
Langmuir ; 29(20): 6032-41, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23656600

RESUMO

Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.


Assuntos
Água/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Tamanho da Partícula , Propriedades de Superfície
5.
Nanoscale Res Lett ; 7(1): 256, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22587757

RESUMO

The enhancement of bendability of flexible nanoelectronics is critically important to realize future portable and wearable nanoelectronics for personal and military purposes. Because there is an enormous variety of materials and structures that are used for flexible nanoelectronic devices, a governing design rule for optimizing the bendability of these nanodevices is required. In this article, we suggest a design rule to optimize the bendability of flexible nanoelectronics through neutral axis (NA) engineering. In flexible optical nanoelectronics, transparent electrodes such as indium tin oxide (ITO) are usually the most fragile under an external load because of their brittleness. Therefore, we representatively focus on the bendability of ITO which has been widely used as transparent electrodes, and the NA is controlled by employing a buffer layer on the ITO layer. First, we independently investigate the effect of the thickness and elastic modulus of a buffer layer on the bendability of an ITO film. Then, we develop a design rule for the bendability optimization of flexible optical nanoelectronics. Because NA is determined by considering both the thickness and elastic modulus of a buffer layer, the design rule is conceived to be applicable regardless of the material and thickness that are used for the buffer layer. Finally, our design rule is applied to optimize the bendability of an organic solar cell, which allows the bending radius to reach about 1 mm. Our design rule is thus expected to provide a great strategy to enhance the bending performance of a variety of flexible nanoelectronics.

6.
Anal Chem ; 82(3): 784-8, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20067298

RESUMO

The evaporating sessile droplet of a mono/didisperse colloid on a plate is a very useful and handy technique in micro/nano/bioapplications to separate, pattern, and control the particles. Although the fundamental nature of the evaporation phenomena and its applications have been extensively proposed, the crucial forces affecting a single particle motion in an evaporating droplet are not reported yet. To elucidate the impact of various forces including the drag, electrostatic, van der Waals, and surface tension forces on the particle motion in suspension, the magnitudes of them are compared using the scale analysis. In the early stage of the evaporation, in which the contact line is fixed, the motion of a single particle suspended in liquid are mostly affected by drag force. Later, with the incidence of the contact line recession, the surface tension force takes over the control of the single particle motion.

7.
J Nanosci Nanotechnol ; 9(12): 7456-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19908808

RESUMO

The objectives of this study are to investigate the combined heat and mass transfer enhancement using binary nanofluids as a working fluid in a H2O/LiBr absorber. The result of heat and mass transfer experiment with the additives (arabicgum, 2E1H) showed that the heat and mass transfer performance of binary nanofluid with 2E1H enhanced significantly. In the case of 0.01 wt% Al2O3 binary nanofluids with 2E1H, the vapor absorption rate increased up to 77% in comparison with that without the additives. The heat transfer rate of 0.01 wt% Al2O3 binary nanofluids with 2E1H increased up to 19%. Based on the experimental results, it is recommended that the Al2O3 binary nanofluid be good with 2E1H to improve the heat and mass transfer performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...