Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729332

RESUMO

BACKGROUND: SARS-CoV-2 Omicron variants have the potential to impact vaccine effectiveness and duration of vaccine-derived immunity. We analyzed U.S. multi-jurisdictional COVID-19 vaccine breakthrough surveillance data to examine potential waning of protection against SARS-CoV-2 infection for the Pfizer-BioNTech (BNT162b) primary vaccination series by age. METHODS: Weekly numbers of SARS-CoV-2 infections during January 16, 2022-May 28, 2022 were analyzed by age group from 22 U.S. jurisdictions that routinely linked COVID-19 case surveillance and immunization data. A life table approach incorporating line-listed and aggregated COVID-19 case datasets with vaccine administration and U.S. Census data was used to estimate hazard rates of SARS-CoV-2 infections, hazard rate ratios (HRR) and percent reductions in hazard rate comparing unvaccinated people to people vaccinated with a Pfizer-BioNTech primary series only, by age group and time since vaccination. RESULTS: The percent reduction in hazard rates for persons 2 weeks after vaccination with a Pfizer-BioNTech primary series compared with unvaccinated persons was lowest among children aged 5-11 years at 35.5% (95% CI: 33.3%, 37.6%) compared to the older age groups, which ranged from 68.7%-89.6%. By 19 weeks after vaccination, all age groups showed decreases in the percent reduction in the hazard rates compared with unvaccinated people; with the largest declines observed among those aged 5-11 and 12-17 years and more modest declines observed among those 18 years and older. CONCLUSIONS: The decline in vaccine protection against SARS-CoV-2 infection observed in this study is consistent with other studies and demonstrates that national case surveillance data were useful for assessing early signals in age-specific waning of vaccine protection during the initial period of SARS-CoV-2 Omicron variant predominance. The potential for waning immunity during the Omicron period emphasizes the importance of continued monitoring and consideration of optimal timing and provision of booster doses in the future.


Assuntos
COVID-19 , Vacinas , Criança , Humanos , Idoso , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Tábuas de Vida , SARS-CoV-2
2.
MMWR Morb Mortal Wkly Rep ; 71(4): 132-138, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35085223

RESUMO

Previous reports of COVID-19 case, hospitalization, and death rates by vaccination status† indicate that vaccine protection against infection, as well as serious COVID-19 illness for some groups, declined with the emergence of the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, and waning of vaccine-induced immunity (1-4). During August-November 2021, CDC recommended§ additional primary COVID-19 vaccine doses among immunocompromised persons and booster doses among persons aged ≥18 years (5). The SARS-CoV-2 B.1.1.529 (Omicron) variant emerged in the United States during December 2021 (6) and by December 25 accounted for 72% of sequenced lineages (7). To assess the impact of full vaccination with additional and booster doses (booster doses),¶ case and death rates and incidence rate ratios (IRRs) were estimated among unvaccinated and fully vaccinated adults by receipt of booster doses during pre-Delta (April-May 2021), Delta emergence (June 2021), Delta predominance (July-November 2021), and Omicron emergence (December 2021) periods in the United States. During 2021, averaged weekly, age-standardized case IRRs among unvaccinated persons compared with fully vaccinated persons decreased from 13.9 pre-Delta to 8.7 as Delta emerged, and to 5.1 during the period of Delta predominance. During October-November, unvaccinated persons had 13.9 and 53.2 times the risks for infection and COVID-19-associated death, respectively, compared with fully vaccinated persons who received booster doses, and 4.0 and 12.7 times the risks compared with fully vaccinated persons without booster doses. When the Omicron variant emerged during December 2021, case IRRs decreased to 4.9 for fully vaccinated persons with booster doses and 2.8 for those without booster doses, relative to October-November 2021. The highest impact of booster doses against infection and death compared with full vaccination without booster doses was recorded among persons aged 50-64 and ≥65 years. Eligible persons should stay up to date with COVID-19 vaccinations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/mortalidade , COVID-19/prevenção & controle , Imunização Secundária , SARS-CoV-2/imunologia , Eficácia de Vacinas , Adulto , Idoso , Humanos , Incidência , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
3.
NEJM Evid ; 1(3)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37207114

RESUMO

BACKGROUND: With the emergence of the delta variant, the United States experienced a rapid increase in Covid-19 cases in 2021. We estimated the risk of breakthrough infection and death by month of vaccination as a proxy for waning immunity during a period of delta variant predominance. METHODS: Covid-19 case and death data from 15 U.S. jurisdictions during January 3 to September 4, 2021 were used to estimate weekly hazard rates among fully vaccinated persons, stratified by age group and vaccine product. Case and death rates during August 1 to September 4, 2021 were presented across four cohorts defined by month of vaccination. Poisson models were used to estimate adjusted rate ratios comparing the earlier cohorts to July rates. RESULTS: During August 1 to September 4, 2021, case rates per 100,000 person-weeks among all vaccine recipients for the January to February, March to April, May to June, and July cohorts were 168.8 (95% confidence interval [CI], 167.5 to 170.1), 123.5 (95% CI, 122.8 to 124.1), 83.6 (95% CI, 82.9 to 84.3), and 63.1 (95% CI, 61.6 to 64.6), respectively. Similar trends were observed by age group for BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccine recipients. Rates for the Ad26.COV2.S (Janssen-Johnson & Johnson) vaccine were higher; however, trends were inconsistent. BNT162b2 vaccine recipients 65 years of age or older had higher death rates among those vaccinated earlier in the year. Protection against death was sustained for the mRNA-1273 vaccine recipients. Across age groups and vaccine types, people who were vaccinated 6 months ago or longer (January-February) were 3.44 (3.36 to 3.53) times more likely to be infected and 1.70 (1.29 to 2.23) times more likely to die from COVID-19 than people vaccinated recently in July 2021. CONCLUSIONS: Our study suggests that protection from SARS-CoV-2 infection among all ages or death among older adults waned with increasing time since vaccination during a period of delta predominance. These results add to the evidence base that supports U.S. booster recommendations, especially for older adults vaccinated with BNT162b2 and recipients of the Ad26.COV2.S vaccine. (Funded by the Centers for Disease Control and Prevention.).

4.
J Ultrasound Med ; 23(9): 1201-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15328435

RESUMO

OBJECTIVE: To evaluate the role of quantitative margin features in the computer-aided diagnosis of malignant and benign solid breast masses using sonographic imaging. METHODS: Sonographic images from 56 patients with 58 biopsy-proven masses were analyzed quantitatively for the following features: margin sharpness, margin echogenicity, and angular variation in margin. Of the 58 masses, 38 were benign and 20 were malignant. Each feature was evaluated individually and in combination with the others to determine its association with malignancy. The combination of features yielding the highest association with malignancy was analyzed by logistic regression to determine the probability of malignancy. The performance of the probability measurements was evaluated by receiver operating characteristic analysis using a round-robin technique. RESULTS: Margin sharpness, margin echogenicity, and angular variation in margin were significantly different for the malignant and benign masses (P < .03, 2-tailed Student t test). According to quantitative measures, tumor-tissue margins of the malignant masses were less distinct than for the benign masses. Although the mean size of the lesions for the two groups was the same, the mean age of the patients was statistically different (P = .000625). After logistic regression analysis, the individual features age, margin sharpness, margin echogenicity, and angular variation in margin were found to be associated with the probability of malignancy (P < .03). The area under the receiver operating characteristic curve +/- SD for the 3-feature logistic regression model combining age, margin echogenicity, and angular variation of margin was 0.87 +/- 0.05. CONCLUSIONS: The proposed quantitative margin features are robust and can reliably measure margin distinctiveness. These features combined with logistic regression analysis can be useful for computer-aided diagnosis of solid breast lesions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Ultrassonografia Mamária , Diagnóstico Diferencial , Feminino , Humanos , Curva ROC , Ultrassonografia Doppler
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...