Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(25): 67788-67803, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37115450

RESUMO

Cobalt mullite adsorbent for the robust adsorption performance toward Victoria Blue (VB) and Metanil Yellow (MY) is fabricated by the sol-gel method at room temperature using dipropylamine as a structure-directing agent. The synthesized adsorbent is characterized by XRD, FT-IR, and HRTEM. From these analyses, it is found that dipropylamine binds with the alumina and cobalt oxide, which makes it into tetrahedral to octahedral form. This interaction causes the formation of cobalt mullite. It is observed that trigonal alumina and orthorhombic cobalt mullite are interlinked to form a hybrid network. The special feature of adopting this adsorbent for the adsorption of VB and MY is that it has a large amount of Brønsted acid site because of the octahedral coordination of Al and Co. The large availability of acid sites in the framework and hybridization of two different network systems favors robust adsorption. The rate of adsorption (K2 = 0.00402 g/mg.min for VB and K2 = 0.004 g/mg.min for MY) and adsorption capacity (Qe = 102.041 mg/g for VB and Qe = 19.0406 mg/g for MY) are greater for VB than MY. This may be due to the more steric factor involved in MY than VB. Thermodynamic parameter indicated that the adsorption of VB and MY is spontaneous, endothermic, and increased randomness in the adsorbent-adsorbate interface. The results from the enthalpy value (ΔH° = 65.43 kJ/mol for VB and ΔH° = 44.729 kJ/mol for MY) revealed that the chemisorption is involved in the adsorption process.


Assuntos
Silicatos de Alumínio , Corantes , Temperatura , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Cobalto , Cinética , Concentração de Íons de Hidrogênio
2.
J Hazard Mater ; 244-245: 10-20, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23246936

RESUMO

Dye pollution in aquatic nature produce serious environmental effects. In this investigation, mesoporous aluminophosphate molecular sieve synthesized and applied for the removal of hazardous dyes Malachite green (MG) and Methylene blue (MB). In the synthesis of mesoporous aluminophosphate (AlPO(4)) molecular sieve, the structure-directing agent, long-chain alkylbenzene has been used as a template. The template used for the synthesis of mesoporous material is environmentally biodegradable. The mesoporous AlPO(4) was synthesized by the absence of an organic base, tetramethyl ammonium hydroxide (TMAOH) which is necessary to maintain the pH for the conventional AlPO(4) synthesis methods. The synthesized mesoporous AlPO(4) has high thermal stability up to 1173K and large porosity nature (40 nm). It was confirmed by the characterization techniques such as low-angle XRD, FT-IR, TGA and BET surface area analysis. The morphology of the material was explained by using SEM and TEM. The hazardous dyes MG and MB removal studied under the various conditions like contact time, dye concentration, temperature, pH and adsorbent dosage to examine the adsorption characteristics of the newly synthesized mesoporous AlPO(4) molecular sieves.


Assuntos
Compostos de Alumínio/química , Corantes/química , Azul de Metileno/química , Fosfatos/química , Corantes de Rosanilina/química , Poluentes Químicos da Água/química , Adsorção , Porosidade , Soluções , Propriedades de Superfície , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
3.
J Hazard Mater ; 189(1-2): 294-300, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21398036

RESUMO

Effluents releasing from dyeing industries directly affect the soil, water, plant and human life. Among these dyes, plant poisoning, soil polluting and water polluting nature of organic dyes are not yet identified. The plant poisoning and non-poisoning organic dyes are identified through adsorption mechanism of cationic malachite green (MG) and anionic methyl orange (MO) on brinjal plant root powder (cellulose). The positive ΔH(o) (44 kJ mol(-1)) of MG higher than 40 kJ mol(-1) confirmed the adsorption of MG on cellulose is chemisorption and the negative ΔH(o) (-11 kJ mol(-1)) less than 40 kJ mol(-1) showed that the adsorption of MO on cellulose is physisorption. The ΔG(o) values for the adsorption of MG and MO on BPR are not much increased with increase of temperature which indicated that the adsorption is independent of the temperature. The entropy change for the adsorption of MG and MO has proved that the MG (+ΔS(o)) has less disorder at the adsorption interface and MO (-ΔS(o)) has the high disorder at the adsorption interface. The recovery of both dyes has been studied in water at 80°C on BPR surface and observed that the MO recovery is 95% and MG is 10%. The poor desorption of MG is due to the strong chemisorption on BPR (cellulose) surface proves its plant poisoning nature. The high recovery of MO due to physisorption mechanism proves that MO is not poisoning the plant.


Assuntos
Celulose/metabolismo , Corantes/toxicidade , Plantas/metabolismo , Poluentes Químicos da Água/toxicidade , Adsorção , Compostos Azo/toxicidade , Resíduos Industriais , Plantas/química , Corantes de Rosanilina/toxicidade , Propriedades de Superfície , Termodinâmica , Testes de Toxicidade
4.
J Hazard Mater ; 157(1): 137-45, 2008 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-18289784

RESUMO

The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol(-1)) than silica (69.93 kJ mol(-1)). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 degrees C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions (DeltaH degrees >40 kJ mol(-1)) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 degrees C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina.


Assuntos
Alumínio/química , Corantes de Rosanilina/isolamento & purificação , Dióxido de Silício/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA