Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Chem Phys ; 151(10): 104202, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521075

RESUMO

We report the observation of backward stimulated Mie scattering (SMS) due to light-field induced spatial redistribution of self-assembled nanospheres of a two-photon resonant organic chromophore in water, pumped by ∼10-ns laser pulses of ∼816-nm wavelength. The pump-energy threshold for generating backward stimulated scattering in such a system is remarkably lower than that in pure water. The gain of backscattering originates from an induced Bragg grating that reflects partial energy from the pump beam into the backward Mie scattering beam. Based on the experimental fact that the time-delay of the SMS pulse onset depends on both the pump level and the viscosity of the solvent, a physical model of SMS generation is proposed. Our experimental results have shown that the major contribution to the formation of an induced Bragg grating is spatial redistribution of nanoparticles suspended in the liquid. These nanoparticles are driven by a force that is proportional to the intensity gradient of the standing-wave field resulting from interference between the forward pump beam and the backward Mie scattering beam. When the nanoparticle motion is frozen in a gel-like medium, no SMS is observed, which experimentally supports the validity of the proposed physical model.

2.
Langmuir ; 35(14): 5069-5074, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30888172

RESUMO

Difflugia are testate amoebae that use particulate inorganic matter to build a protective shell (generally called a test or theca). Difflugia globulosa were grown both in culture containing only naturally occurring theca-building materials and under conditions where synthetic particles were present also. The presence of monodisperse Stöber silica microspheres of 1, 3, and 6 µm in diameter or 4 µm polystyrene spheres dramatically increased the rate of Difflugia growth, and foreign microspheres became the overwhelmingly dominant construction material. Optical and electron microscopy of the 6 µm particle studies revealed that Difflugia construct spherical vase-shaped thecae with strikingly reproducible composition, morphology, and size. Time-lapse photography revealed construction techniques and masonry skills as Difflugia herded particles together, trapped them using phagocytosis, and applied the particles with biocement from inside the developing theca. The reported observations identify taxonomy complications, biomicrofabrication possibilities, and a discrete environmental impact of synthetic particle pollutants.


Assuntos
Amoeba/metabolismo , Microesferas , Material Particulado/metabolismo , Poliestirenos/metabolismo , Dióxido de Silício/metabolismo , Amoeba/química , Amoeba/crescimento & desenvolvimento , Tamanho da Partícula , Material Particulado/química , Poliestirenos/química , Dióxido de Silício/química , Propriedades de Superfície
3.
Phys Chem Chem Phys ; 20(29): 19398-19407, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30014086

RESUMO

Two photon absorption (2PA) is of great interest across many disciplines and there has been a large effort to increase the two-photon cross section (σ2) via synthetic modification, especially by enhancing intramolecular charge-transfer (ICT). This work takes the previously studied (7-benzothiazol-2-yl-9,9-diethylfluoren-2-yl)diphenylamine (AF240), an asymmetric D-π-A chromophore, and intentionally appends a functional group (-OH, AF240-OH or -OCH3, AF240-OMe) to the 6-position of the fluorenyl π-bridge of the new chromophores. Electrochemical results in both dichloromethane and acetonitrile support stabilization of the highest occupied molecular orbital in the derivatives due to inductive electron donating effects of the hydroxy and methoxy groups. The lowest unoccupied molecular orbital is stabilized via intramolecular hydrogen bonding to the benzothiazole moiety in the case of AF240-OH. As previously observed for AF240, the steady-state emission spectra show significant solvatochromism as they broaden and red shift with increasing solvent polarity. The fluorescence lifetimes and quantum yields show that the non-radiative rate constant is increased for AF240-OH in all solvents, especially in nonpolar media. The results suggest there is forced intramolecular hydrogen bonding to the benzothiazole in nonpolar solvents because the solvent poorly solubilizes the hydroxy group. This increases the non-radiative decay rate constant (knr) via additional vibrational decay pathways. While not as dramatic, the increase in knr in polar solvents supports some deactivation via hydrogen bonding to the solvent. Steric effects are also observed in the methoxy derivative, which inhibits planarization of the benzothiazole with the fluorene, increasing the energy of the excited state. Ultrafast transient absorption spectroscopy in tetrahydrofuran solution supports stabilization of the excited state in a few ps as solvent and structural reorganizations occur. In the case of AF240-OH, no evidence of proton transfer is observed. The decrease in emission energies in the case of AF240-OH support increased ICT driven by higher degree of coplanarity and the quinoidal structure in the excited state. However, a moderate increase in the intrinsic 2PA cross-section is resulted. It is likely because of the two possible and competing solvent-stabilized ICT processes (PICT and TICT) in AF240-OH. Nevertheless, the strategic presence of a hydroxide group capable of intramolecular hydrogen bonding in AF240-OH provides a much broader 2PA sensitivity window than AF240.

4.
ACS Photonics ; 4(11): 2699-2705, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30246053

RESUMO

In recent years, photoacoustic tomography (PAT) is increasingly used in biomedical research, as it allows for direct visualization of optical absorption in deep tissue. In addition to vascular and hemodynamic imaging using endogenous contrasts, PAT is also capable of imaging neural and molecular dynamics with extrinsic contrasts. While near-infrared (NIR)-absorbing contrasts are preferred for deep tissue imaging, compared to visible-light-absorbing contrasts, they are much harder to design and synthesize with good environmental stability. We introduce here a new PAT mode which utilizes nonlinear multiphoton upconversion of NIR light in situ to visible light, thus exciting locally a dye that can generate strong photoacoustic signal. This approach allows to take advantage of a large library of visible-light-absorbing dyes that can enable functional imaging, such as imaging of voltage, oxygen, pH, and ion channel activities. Two types of upconversion materials are utilized in this work: 1) a two-photon absorbing and emitting dye that is efficiently excited by NIR nanosecond laser pulses to enable pulsed laser-based PAT (pulsed-PAT); and 2) rare-earth containing inorganic nanocrystals that absorb continuous-wave (CW) NIR light by sequential multiphoton absorption through real intermediate states to enable intensity-modulated CW laser-based PAT (CW-PAT). Since both cases produce highly localized nonlinear photoacoustic signal, which has very weak scattering in tissue, we can achieve high contrast 3-D volume imaging of deep tissues. In this study, we validated the principle of our approach in different PAT modes and successfully detected enhanced photoacoustic signals from a visible-light-absorbing dye embedded deep in tissue. With vast variety of functionalized organic dyes operating in the visible range, our mode of nonlinear photoacoustic imaging will find great applications in preclinical and clinical researches.

5.
Phys Chem Chem Phys ; 18(7): 5587-96, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26862976

RESUMO

The two-photon absorbing dye AF240 [1, (7-benzothiazol-2-yl-9,9-diethylfluoren-2-yl)diphenylamine] is modified by adding bulky alkyl groups to the diphenylamino moiety. Three new compounds are synthesized which have ethyl groups in both ortho positions of each phenyl ring (2), t-butyl groups in one ortho position of each phenyl ring (3), and t-butyl groups in the para position of each phenyl ring (4). The dyes are examined in several aprotic solvents with varying polarity to observe the effects of the sterically hindering bulky groups on the ground and excited-state photophysical properties. While the ground state shows minimal solvent dependence, there is significant dependence on the fluorescence quantum yield and lifetime, as well as the excited-state energy levels. This effect is caused by the formation of an intramolecular charge-transfer (ICT) state, which is observed in the solvents more polar than n-hexane and supported by TD-DFT calculations. Electronic effects of ortho or para alkyl substitution should be similar, yet drastic differences are observed. A red shift in the fluorescence maximum is observed in 4 relative to 1, yet a blue shift occurs in 2 and 3 because the substituents at the sterically sensitive ortho-positions inhibit excited-state geometric relaxation and result in less ICT character than 1. Coupled with theoretical calculations, the data support a planar ICT (PICT) excited state where the diphenylamino nitrogen in an sp(2)-like geometry is integral with the plane containing the fluorene and benzothiazole moieties. Ultrafast transient absorption experiments show that ICT occurs rapidly (<150 fs) followed by geometric and solvent relaxation in ∼ 1-4 ps to form the PICT or solvent-stabilized ICT (SSICT) state. This relaxation is not observed in non-polar n-hexane because the solvent dependent ICT state energy lies higher than the locally-excited (LE) state. Finally, formation of a triplet state (T1) is only efficiently observed in n-hexane for all four dyes.

6.
J Phys Chem A ; 111(10): 1899-906, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17388283

RESUMO

A comprehensive photophysical study of the linear and nonlinear absorption properties has been carried out on two series of two-photon absorbing dyes to gain insight into how structure-property relationships influence observed nonlinear absorption. The materials studied consist of an electron accepting benzothiazole group connected to an electron donating diphenylamine via a fluorene bridging group. Two series differ from each other by the addition of one phenyl group and for each series one-arm (dipolar, AF240 and AF270), two-arm (quadrupolar, AF287 and AF295), and three-arm (octupolar, AF350 and AF380) versions were studied. Overall the AF240 series exhibits higher intrinsic two-photon absorption (TPA) cross-sections than the AF270 series as well as enhanced nanosecond nonlinear absorption, with an increase with number of branches. The enhanced nanosecond nonlinearity is understood by taking into account the contribution from the singlet and triplet excited states and was verified by a two-photon assisted excited-state absorption model that satisfactorily predicts the nonlinear absorption of the chromophores.

7.
Inorg Chem ; 46(2): 395-402, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-17279817

RESUMO

The synthesis, characterization, photochemistry, and two-photon photophysical properties of a new dye-derivatized iron sulfur nitrosyl cluster Fe2(mu-RS)2(NO)4 (AFX-RSE, RS = 2-thioethyl ester of N-phenyl-N-(3-(2-ethoxy)phenyl)-7-(benzothiazol-2-yl)-9,9-diethyl-fluoren-2-yl-amine) were investigated. Under continuous photolysis, AFX-RSE decomposes with modest quantum yields (Phi(diss) = (4.9 +/- 0.9) x 10(-3) at lambda(irr) = 436 nm) as measured from the loss of the nitrosyl bands in the IR absorbance spectrum. Nitric oxide (NO) was qualitatively demonstrated to be photochemically produced via single-photon excitation through the use of an NO-specific electrode. Steady-state luminescence measurements have shown that AFX-RSE fluorescence is about 88% quenched relative to the model compound AF-tosyl. This is attributed to a relatively efficient energy transfer from the excited states of the antenna chromophores to the dinuclear metal center, with the subsequent production of NO. In addition, the two-photon absorption (TPA) cross sections (delta) were measured for the AF-chromophores via the two-photon excitation (TPE) photoluminescence technique using a femtosecond excitation source. The TPA cross section of AFX-RSE was found with this technique to be delta = 246 +/- 8 GM (1 GM = 10(-50) cm4 s photon(-1) molecule(-1)).


Assuntos
Compostos de Ferro/química , Óxido Nítrico/química , Ésteres , Fluorescência , Espectroscopia de Ressonância Magnética , Fotoquímica , Fótons
8.
J Phys Chem A ; 110(49): 13172-82, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17149830

RESUMO

A series of one-photon absorption spectra for fluorene-based donor-pi-acceptor molecules is presented and spectroscopically assigned, based upon the results obtained from time-dependent density functional theory. The computed excitation energies were generally shown to be in good agreement with experiment, particularly when compared to results from measurements carried out in a nonpolar solvent, which were available for some molecules. The computed oscillator strengths may resolve discordant experimental values in some cases, for example, for AF-380, AF-270, and AF-295. However, a quantitative comparison between computed and observed oscillator strengths is complicated by band overlapping. Thus, the computed extinction coefficients obtained by summing over the Gaussian bands are useful in such cases.

10.
J Chem Phys ; 120(11): 5275-84, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15267399

RESUMO

Degenerate two-photon absorption (TPA) spectral properties of five AFX chromophore solutions have been studied using a single and spectrally dispersed sub-picosecond white-light continuum beam. In a specially designed optical configuration, optical pathways inside the sample solution for different spectral components of the focused continuum beam were spatially separated from each other. Thus, the nondegenerate TPA processes coming from different spectral components can be eliminated, and the direct nonlinear absorption spectrum attributed to degenerate TPA processes can be readily obtained. Using this new technique, the complete TPA spectra for these five highly two-photon-active compounds (AF-380, AF-350, AF-295, AF-270, and AF-50) were obtained in the spectral range from 600 to 950 nm on an absolute scale of TPA cross section. The relationship between the molecular structures and their TPA spectral behaviors are discussed. In general the measured TPA spectra are not identical with the linear absorption spectra on the scale of absorbed photon(s) energy. Moreover, for some sample (such as AF-380), the TPA spectrum is totally different from the linear spectrum, which implies the difference of molecular transition pathways and selection rules for one- and two-photon excitation processes. At high excitation intensity levels (>or=15 GW/cm(2)), the saturation behavior of TPA transition can be observed obviously in AF-350 and AF-380 solutions that exhibit much higher nonlinear absorptivity than the other chromophores investigated.

11.
Chem Commun (Camb) ; (17): 1854-5, 2002 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-12271642

RESUMO

The first, highly two-photon active C60 derivative comprised of a A-sp3-D conjugate structure was synthesized showing effective two-photon absorption cross-sections (sigma 2' = 196 x 10(-48) cm4 sec-1 molecule-1) in the nanosecond regime among the best values for diphenylaminofluorene-based AFX chromophores.

12.
Opt Express ; 10(13): 566-74, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19436399

RESUMO

We present a new technique for direct measurements of degenerate two-photon absorption (TPA) spectra of two-photon absorbing materials including non-fluorescent samples. This technique is based on the use of an intense single continuum-generation beam as the coherent whitelight source with specially flattened spectral distribution. The different spectral components of the continuum beam are spatially dispersed and then passed through the sample material along different pathways so that nondegenerate TPA processes among different input spectral components can be avoided. By comparing the input and transmitted continuum spectral distributions, the TPA spectrum for a given sample can be obtained. As an example, the continuous TPA spectrum (from 550 to 1000 nm) is measured for a novel two-photon-absorbing compound (AF-389) which exhibits an extremely high TPA cross-section value of ~1x10-20 cm4/GW, or ~249 GM, around ~800-nm spectral range in femtosecond regime.

13.
In. Macharé, José, comp; Ortlieb, Luc, comp. Registro del fenómeno el niño y de eventos ENSO en América del Sur. Lima, Perú. Institut Francais d'Etudes Andines, 1992. p.227-41, ilus. (Bulletin de l'Institut Francais d'Etudes Andines, 22, 1).
Monografia em En | Desastres | ID: des-9282

RESUMO

Fossil diatoms from a sediment core of Lake Yambo, a lake in an endorheic, desert region of the Ecuadorian Andes, provide a record of precipitation events that can be linked to the ENSO phenomenon. Abnormally high precipitation in the region during the 1982-83 El Niño caused a substantial drop in the lake's conductivity. The diatom flora in the lake changed from a community dominated by the halophilic species Craticula halophila, to one dominated by a fresh water species Aulacoseira distans. Similar shifts in dominance can be seen at various points throughout the core. There also appears to be an increase in sediment deposition at these points. This paper provides tha first evidence that the use of fossil diatoms from lake cores can be a valuable tool in reconstructing histories of El Niño events (AU)


Assuntos
Fósseis , Conceitos Meteorológicos , 25328 , Diatomáceas , Equador , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...