Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37922082

RESUMO

The flash flood-induced erosion is the primary contributor to soil loss within the Indian Himalayan Region (IHR). This phenomenon is exacerbated by a confluence of factors, including extreme precipitation events, undulating topographical features, and suboptimal soil and water conservation practices. Over the past few decades, several flash flood events have led to the significant degradation of pedosphere strata, which in turn has caused landslides along with fluvial sedimentation in the IHR. Researchers have advocated morphometric, hydrologic, and semi-empirical methods for assessing flash flood-induced soil erosion in hilly watersheds. This study critically examines these methods and their applicability in the Alaknanda River basin of the Indian Himalayan Region. The entire basin is delineated into 12 sub-watersheds, and 13 morphometric parameters are analyzed for each sub-watershed. Thereafter, the ranking of sub-watersheds vulnerability is assigned using the Principal Component Analysis (PCA), compounding method (CM), Geomorphological Instantaneous Unit Hydrograph (GIUH), and Revised Universal Soil Loss Equations (RUSLE) approaches. While the CM method uses all 13 parameters, the PCA approach suggests that the first four principal components are the most important ones, accounting for approximately 89.7% of the total variance observed within the dataset. The GIUH approach highlights the hydrological response of the catchment, incorporating dynamic velocity and instantaneous peak magnifying the flash flood susceptibility, lag time, and the time to peak for each sub-watershed. The RUSLE approach incorporates mathematical equations for estimating annual soil loss utilizing rainfall-runoff erosivity, soil erodibility, topographic, cover management, and supporting practice factors. The variations in vulnerability rankings across various methods indicate that each method captures distinct aspects of the sub-watersheds. The decision-maker can use the weighted average to assign the overall vulnerability to each sub-watershed, aggregating the values from various methods. This study considers an equal weight to the morphometric, hydrological GIUH, and semi-empirical RUSLE techniques to assess the integrated ranking of various sub-watersheds. Vulnerability to flash flood-induced landslides in various sub-watersheds is categorized into three classes. Category I (high-priority) necessitates immediate erosion control measures and slope stabilization. Category II (moderate attention), where rainwater harvesting and sustainable agricultural practices are beneficial. Category III (regular monitoring) suggests periodic community-led soil assessments and afforestation. Sub-watersheds WS11, WS8, WS5, and WS12 are identified under category I, WS7, WS4, WS9, and WS6 under category II, and WS1, WS3, WS2, and WS10 under category III. The occurrence of landslides and flash-flood events and field observations validates the prioritization of sub-watersheds, indicating the need for targeted interventions and regular monitoring activities to mitigate environmental risks and safeguard surrounding ecosystems and communities.

2.
Environ Dev Sustain ; : 1-31, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36624733

RESUMO

Rapid urbanization in developing countries has imposed threats and challenges to basic urban infrastructures like drinking water, transportation, and energy systems. The existing urban drinking water systems (UDWS) are highly stressed and unsustainable, particularly under changing hydroclimatic conditions, population growth, changing socioeconomic conditions, government decisions, and various policies. This study focuses on the complexities of UDWS in Sub-Saharan African countries, especially in Ethiopia. The objective of this study is to investigate the issues and challenges of urban drinking water systems (UDWS) in Ethiopia, specifically, to assess the gap between water supply and demand, water loss/non-revenue water, environmental, technical, institutional, and governance, etc. and propose sustainable interventions to deal with such issues so as to improve. For this purpose, a mix of methods involving primary data (including key informant interviews, field observations, and field measured data) and secondary data (including published articles, books, various reports, and design documents), as well as various computer-aided applications (mainly, ArcGIS and WaterGEMS) are used to collect data. The issues are deliberated through the UDWSs of Addis Ababa, Adama, Mekelle, and Dire Dawa cities in Ethiopia. Complexities like water shortage, high and low pressure in the water distribution network (WDN), non-revenue water (NRW)/water loss, source pollution, ineffective policies and governance, and weak institutions are the main challenges to Ethiopian cities' water utilities. Further, the case study noticed that in Addis Ababa alone, potable water is only accessible to 66% of the city population. A significant water supply deficit was observed in Mekelle city, where only half of the city population has access to potable water from the system. Additionally, in Addis Ababa, Adama, Mekelle, and Dire Dawa, above 35% of the freshwater produced is either NRW, unaccounted for, or lost, which is significantly higher than the upper 25% limit suggested by the World Bank. Therefore, it is recommended to adopt certain sustainable interventions, such as integrated water resource management, installing appurtenances like pressure-reducing valves, check valves in the WDN, controlling and monitoring of WDN through supervisory control and data acquisition and Internet of Things, effective and long-term planning and policy, etc. It is felt that the study will help the decision-makers and the operators of the UDWS utilities to run the water supply schemes in a sustainable manner. Supplementary Information: The online version contains supplementary material available at 10.1007/s10668-022-02901-7.

3.
Sci Total Environ ; 795: 148871, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34378536

RESUMO

Himalayan rivers are the paramount source of water supply to millions of people in northern India for drinking, irrigation and hydropower generation. Several researches reported that the hydrological regime of these Himalayan rivers is vulnerable to climate change. In order to understand the hydrologic response of their headwaters and examine the climate change impacts on streamflow, a hydrological modelling study is carried out in the upper part of the Satluj river basin in western Himalaya by using a temperature index based SWAT (Soil Water Assessment Tool) model. The model performed well for both calibration (years 1986-2000) and validation (2001-2005) periods against the observed daily streamflow at Rampur (R2 ≈ 0.9 and NSE ≥ 0.85). The study reveals that having a larger snow covered area, the snowmelt runoff is the major contributor to the Satluj river discharge at Rampur that comes out to be about 68-71% of the average annual water yield of about 600 mm. The actual evapotranspiration comes out to be about 14% of precipitation. The water yield of the basin is about 50% of the precipitation, for which the major part is generated in early summer. Further, to study the climate change impact on future streamflow, the downscaled data of CORDEX CCSM4 under two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios are used. The bias correction is applied at point level to remove biases from future time series of downscaled data and subsequently loaded into the SWAT model to simulate the future streamflows at the end of the century. The future climate variability in terms of precipitation and temperature exhibited that the climate in the region would become wetter and warmer. A 14% to 21% of increase in annual precipitation is predicted towards the end of the century from the current average annual precipitation of about 420 mm under RCP4.5 and RCP8.5, respectively. Similar to precipitation, the temperature will also be increased by 2.18 °C to 5.71 °C (in both the RCPs) than the current temperature values. The changed climate conditions in future are transformed into the possible range of stream flows using the SWAT model and found that the future climate would increase the streamflow by over 11%-19% at the end of the century under RCP4.5 and RCP8.5 scenarios, respectively. The outcome of this study can be used to develop the suitable strategies for sustainable water management in the region.


Assuntos
Camada de Gelo , Neve , Mudança Climática , Humanos , Hidrologia , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...