Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(8): 936-946, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294884

RESUMO

Identifying novel, unique, and personalized molecular targets for patients with pancreatic ductal adenocarcinoma (PDAC) remains the greatest challenge in altering the biology of fatal tumors. Bromo- and extra-terminal domain (BET) proteins are activated in a noncanonical fashion by TGFß, a ubiquitous cytokine in the PDAC tumor microenvironment (TME). We hypothesized that BET inhibitors (BETi) represent a new class of drugs that attack PDAC tumors via a novel mechanism. Using a combination of patient and syngeneic murine models, we investigated the effects of the BETi drug BMS-986158 on cellular proliferation, organoid growth, cell-cycle progression, and mitochondrial metabolic disruption. These were investigated independently and in combination with standard cytotoxic chemotherapy (gemcitabine + paclitaxel [GemPTX]). BMS-986158 reduced cell viability and proliferation across multiple PDAC cell lines in a dose-dependent manner, even more so in combination with cytotoxic chemotherapy (P < 0.0001). We found that BMS-986158 reduced both human and murine PDAC organoid growth (P < 0.001), with associated perturbations in the cell cycle leading to cell-cycle arrest. BMS-986158 disrupts normal cancer-dependent mitochondrial function, leading to aberrant mitochondrial metabolism and stress via dysfunctional cellular respiration, proton leakage, and ATP production. We demonstrated mechanistic and functional data that BETi induces metabolic mitochondrial dysfunction, abrogating PDAC progression and proliferation, alone and in combination with systemic cytotoxic chemotherapies. This novel approach improves the therapeutic window in patients with PDAC and offers another treatment approach distinct from cytotoxic chemotherapy that targets cancer cell bioenergetics.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Gencitabina , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Desoxicitidina/uso terapêutico , Proliferação de Células , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Mitocôndrias , Microambiente Tumoral
2.
Mol Carcinog ; 61(6): 549-557, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319799

RESUMO

Pancreatic ductal adenocarcinoma (PDA) tumors have a highly immunosuppressive desmoplastic tumor microenvironment (TME) where immune checkpoint inhibition (ICI) therapy has been exceptionally ineffective. Transforming growth factor-ß (TGF-ß) receptor activation leads to cancer and immune cell proliferation and phenotype, and cytokine production leading to tumor progression and worse overall survival in PDA patients. We hypothesized that TGF-ß receptor inhibition may alter PDA progression and antitumor immunity in the TME. Here, we used a syngeneic preclinical murine model of PDA to explore the impact of TGF-ß pathway inhibitor galunisertib (GAL), dual checkpoint immunotherapy (anti-PD-L1 and CTLA-4), the chemotherapy gemcitabine (GEM), and their combinations on antitumor immune responses. Blockade of TGF-ß and ICI in immune-competent mice bearing orthotopically injected murine PDA cells significantly inhibited tumor growth and was accompanied by antitumor M1 macrophage infiltration. In contrast, GEM treatment resulted in increased PDA tumor growth, decreased antitumor M1 macrophages, and decreased cytotoxic CD8+ T cell subpopulation compared to control mice. Together, these findings demonstrate the ability of TGF-ß inhibition with GAL to prime antitumor immunity in the TME and the curative potential of combining GAL with dual ICI. These preclinical results indicate that targeted inhibition of TGF-ß may enhance the efficacy of dual immunotherapy in PDA. Optimal manipulation of the immune TME with non-ICI therapy may enhance therapeutic efficacy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/genética , Desoxicitidina/análogos & derivados , Humanos , Imunoterapia/métodos , Camundongos , Neoplasias Pancreáticas/patologia , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Gencitabina , Neoplasias Pancreáticas
3.
J Gastrointest Surg ; 26(1): 113-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260016

RESUMO

PURPOSE: Immunotherapy, such as checkpoint inhibitors against anti-programmed death-ligand 1 (PD-L1), has not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and the TGF-ß cytokine are critical in anti-cancer immunity. We hypothesized that TGF-ß enhances the immunosuppressive effects of TAM, MDSC, and DC presence in tumors. METHODS: Using a murine PDAC cell line derived from a genetically engineered mouse model, we orthotopically implanted treated cells plus drug embedded in Matrigel into immunocompetent mice. Treatments included saline control, TGF-ß1, or a TGF-ß receptor 1 small molecule inhibitor, galunisertib. We investigated TAM, MDSC, DC, and TAM PD-L1 expression with flow cytometry in tumors. Separately, we used the TIMER2.0 database to analyze TAM and PD-L1 gene expression in human PDAC tumors in TCGA database. RESULTS: TGF-ß did not alter MDSC or DC frequencies in the primary tumors. However, in PDAC metastases to the liver, TGF-ß decreased the proportion of MDSCs (P=0.022) and DCs (P=0.005). TGF-ß significantly increased the percent of high PD-L1 expressing TAMs (32 ± 6 % vs. 12 ± 5%, P=0.013) but not the proportion of TAMs in primary and metastatic tumors. TAM PD-L1 gene expression in TCGA PDAC database was significantly correlated with tgb1 and tgfbr1 gene expression (P<0.01). CONCLUSIONS: TGF-ß is important in PDAC anti-tumor immunity, demonstrating context-dependent impact on immune cells. TGF-ß has an overall immunosuppressive effect mediated by TAM PD-L1 expression and decreased presence of DCs. Future investigations will focus on enhancing anti-cancer immune effects of TGF-ß receptor inhibition.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fator de Crescimento Transformador beta/farmacologia , Animais , Antígeno B7-H1 , Carcinoma Ductal Pancreático/tratamento farmacológico , Células Dendríticas , Imunoterapia , Linfócitos do Interstício Tumoral , Macrófagos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico
4.
Cell Oncol (Dordr) ; 44(3): 673-687, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33694102

RESUMO

PURPOSE: The transforming growth factor-beta (TGF-ß) pathway plays a paradoxical, context-dependent role in pancreatic ductal adenocarcinoma (PDAC): a tumor-suppressive role in non-metastatic PDAC and a tumor-promotive role in metastatic PDAC. We hypothesize that non-SMAD-TGF-ß signaling induces PDAC progression. METHODS: We investigated the expression of non-SMAD-TGF-ß signaling proteins (pMAPK14, PD-L1, pAkt and c-Myc) in patient-derived tissues, cell lines and an immunocompetent mouse model. Experimental models were complemented by comparing the signaling proteins in PDAC specimens from patients with various survival intervals. We manipulated models with TGF-ß, gemcitabine (DNA synthesis inhibitor), galunisertib (TGF-ß receptor inhibitor) and MK-2206 (Akt inhibitor) to investigate their effects on NF-κB, ß-catenin, c-Myc and PD-L1 expression. PD-L1 expression was also investigated in cancer cells and tumor associated macrophages (TAMs) in a mouse model. RESULTS: We found that tumors from patients with aggressive PDAC had higher levels of the non-SMAD-TGF-ß signaling proteins pMAPK14, PD-L1, pAkt and c-Myc. In PDAC cells with high baseline ß-catenin expression, TGF-ß increased ß-catenin expression while gemcitabine increased PD-L1 expression. Gemcitabine plus galunisertib decreased c-Myc and NF-κB expression, but induced PD-L1 expression in some cancer models. In mice, gemcitabine plus galunisertib treatment decreased metastases (p = 0.018), whereas galunisertib increased PD-L1 expression (p < 0.0001). In the mice, liver metastases contained more TAMs compared to the primary pancreatic tumors (p = 0.001), and TGF-ß increased TAM PD-L1 expression (p < 0.05). CONCLUSIONS: In PDAC, the non-SMAD-TGF-ß signaling pathway leads to more aggressive phenotypes, TAM-induced immunosuppression and PD-L1 expression. The divergent effects of TGF-ß ligand versus receptor inhibition in tumor cells versus TAMs may explain the TGF-ß paradox. Further evaluation of each mechanism is expected to lead to the development of targeted therapies.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Fator de Crescimento Transformador beta/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
5.
J Med Chem ; 63(19): 10855-10878, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32886511

RESUMO

Capuramycin displays a narrow spectrum of antibacterial activity by targeting bacterial translocase I (MraY). In our program of development of new N-acetylglucosaminephosphotransferase1 (DPAGT1) inhibitors, we have identified that a capuramycin phenoxypiperidinylbenzylamide analogue (CPPB) inhibits DPAGT1 enzyme with an IC50 value of 200 nM. Despite a strong DPAGT1 inhibitory activity, CPPB does not show cytotoxicity against normal cells and a series of cancer cell lines. However, CPPB inhibits migrations of several solid cancers including pancreatic cancers that require high DPAGT1 expression in order for tumor progression. DPAGT1 inhibition by CPPB leads to a reduced expression level of Snail but does not reduce E-cadherin expression level at the IC50 (DPAGT1) concentration. CPPB displays a strong synergistic effect with paclitaxel against growth-inhibitory action of a patient-derived pancreatic adenocarcinoma, PD002: paclitaxel (IC50: 1.25 µM) inhibits growth of PD002 at 0.0024-0.16 µM in combination with 0.10-2.0 µM CPPB (IC50: 35 µM).


Assuntos
Aminoglicosídeos/farmacologia , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Neoplasias/patologia , Aminoglicosídeos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Paclitaxel/farmacologia , Fatores de Transcrição da Família Snail/antagonistas & inibidores , Relação Estrutura-Atividade
6.
Sci Transl Med ; 11(482)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842314

RESUMO

The failure of anti-CD20 antibody (Rituximab) as therapy for lupus may be attributed to the transient and incomplete B cell depletion achieved in clinical trials. Here, using an alternative approach, we report that complete and sustained CD19+ B cell depletion is a highly effective therapy in lupus models. CD8+ T cells expressing CD19-targeted chimeric antigen receptors (CARs) persistently depleted CD19+ B cells, eliminated autoantibody production, reversed disease manifestations in target organs, and extended life spans well beyond normal in the (NZB × NZW) F1 and MRL fas/fas mouse models of lupus. CAR T cells were active for 1 year in vivo and were enriched in the CD44+CD62L+ T cell subset. Adoptively transferred splenic T cells from CAR T cell-treated mice depleted CD19+ B cells and reduced disease in naive autoimmune mice, indicating that disease control was cell-mediated. Sustained B cell depletion with CD19-targeted CAR T cell immunotherapy is a stable and effective strategy to treat murine lupus, and its effectiveness should be explored in clinical trials for lupus.


Assuntos
Antígenos CD19/metabolismo , Linfócitos B/imunologia , Imunoterapia Adotiva , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Depleção Linfocítica , Linfócitos T/metabolismo , Animais , Feminino , Lúpus Eritematoso Sistêmico/sangue , Camundongos , Fenótipo , Proteoma/metabolismo , Análise de Sobrevida
7.
Mol Biol Cell ; 27(11): 1834-44, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053659

RESUMO

To evaluate the role of cytoplasmic domains of membrane-spanning proteins in directing trafficking through the secretory pathway, we generated fluorescently tagged VSV G tsO45 with either the native G tail (G) or a cytoplasmic tail derived from the chicken AE1-4 anion exchanger (G(AE)). We previously showed that these two proteins progressed through the Golgi with distinct kinetics. To investigate the basis for the differential sorting of G and G(AE), we analyzed the role of several Golgi-associated small GTP-binding proteins and found that Rab43 differentially regulated their transport through the Golgi. We show that the expression of GFP-Rab43 arrested the anterograde transport of G(AE) in a Rab43-positive medial Golgi compartment. GFP-Rab43 expression also inhibited the acquisition of endoH-resistant sugars and the surface delivery of G(AE), as well as the surface delivery of the AE1-4 anion exchanger. In contrast, GFP-Rab43 expression did not affect the glycosylation or surface delivery of G. Unexpectedly, down-regulation of endogenous Rab43 using small interfering RNA resulted in an increase in the accumulation of G(AE) on the cell surface while having minimal effect on the surface levels of G. Our data demonstrate that Rab43 regulates the sorting of a subset of membrane-spanning cargo as they progress through the medial Golgi.


Assuntos
Complexo de Golgi/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Células COS , Membrana Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Via Secretória
8.
Oncotarget ; 7(18): 26331-45, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27028866

RESUMO

Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma.


Assuntos
Proteína Agouti Sinalizadora/metabolismo , Melanoma Experimental/patologia , Receptor Tipo 1 de Melanocortina/antagonistas & inibidores , Proteína Agouti Sinalizadora/genética , Animais , Linhagem Celular Tumoral , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
PLoS Negl Trop Dis ; 9(1): e0003446, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25629897

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) are common causes of diarrheal morbidity and mortality in developing countries for which there is currently no vaccine. Heterogeneity in classical ETEC antigens known as colonization factors (CFs) and poor efficacy of toxoid-based approaches to date have impeded development of a broadly protective ETEC vaccine, prompting searches for novel molecular targets. METHODOLOGY: Using a variety of molecular methods, we examined a large collection of ETEC isolates for production of two secreted plasmid-encoded pathotype-specific antigens, the EtpA extracellular adhesin, and EatA, a mucin-degrading serine protease; and two chromosomally-encoded molecules, the YghJ metalloprotease and the EaeH adhesin, that are not specific to the ETEC pathovar, but which have been implicated in ETEC pathogenesis. ELISA assays were also performed on control and convalescent sera to characterize the immune response to these antigens. Finally, mice were immunized with recombinant EtpA (rEtpA), and a protease deficient version of the secreted EatA passenger domain (rEatApH134R) to examine the feasibility of combining these molecules in a subunit vaccine approach. PRINCIPAL FINDINGS: EtpA and EatA were secreted by more than half of all ETEC, distributed over diverse phylogenetic lineages belonging to multiple CF groups, and exhibited surprisingly little sequence variation. Both chromosomally-encoded molecules were also identified in a wide variety of ETEC strains and YghJ was secreted by 89% of isolates. Antibodies against both the ETEC pathovar-specific and conserved E. coli antigens were present in significantly higher titers in convalescent samples from subjects with ETEC infection than controls suggesting that each of these antigens is produced and recognized during infection. Finally, co-immunization of mice with rEtpA and rEatApH134R offered significant protection against ETEC infection. CONCLUSIONS: Collectively, these data suggest that novel antigens could significantly complement current approaches and foster improved strategies for development of broadly protective ETEC vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Escherichia coli Enterotoxigênica/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Transporte/imunologia , Sequência Conservada , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Peptídeo Hidrolases , Vacinação , Vacinas de Subunidades Antigênicas/imunologia
10.
Traffic ; 16(3): 267-83, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25470762

RESUMO

To investigate the role of cytoplasmic sequences in directing transmembrane protein trafficking through the Golgi, we analyzed the sorting of VSV tsO45 G fusions with either the native G cytoplasmic domain (G) or an alternative cytoplasmic tail derived from the chicken AE1-4 anion exchanger (G(AE) ). At restrictive temperature G(AE) and G accumulated in the ER, and upon shifting the cells to permissive temperature both proteins folded and underwent transport through the Golgi. However, G(AE) and G did not form hetero-oligomers upon the shift to permissive temperature and they progressed through the Golgi with distinct kinetics. In addition, the transport of G through the proximal Golgi was Arf1 and COPI-dependent, while G(AE) progression through the proximal Golgi was Arf1 and COPI-independent. Although Arf1 did not regulate the sorting of G(AE) in the cis-Golgi, Arf1 did regulate the exit of G(AE) from the TGN. The trafficking of G(AE) through the Golgi was similar to that of the native AE1-4 anion exchanger, in that the progression of both proteins through the proximal Golgi was Arf1-independent, while both required Arf1 to exit the TGN. We propose that the differential recognition of cytosolic signals in membrane-spanning proteins by the Arf1-dependent sorting machinery may influence the rate at which cargo progresses through the Golgi.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Células COS , Linhagem Celular , Galinhas , Chlorocebus aethiops , Complexo I de Proteína do Envoltório/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Cães , Retículo Endoplasmático/metabolismo , Cinética , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína/fisiologia
11.
Infect Immun ; 81(1): 259-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115039

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens.


Assuntos
Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/patogenicidade , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Adesinas Bacterianas/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , GMP Cíclico/imunologia , GMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Escherichia coli Enterotoxigênica/imunologia , Células Epiteliais/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Expressão Gênica/genética , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Receptores de AMP Cíclico/genética , Receptores de AMP Cíclico/imunologia , Receptores de AMP Cíclico/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Virulência
12.
PLoS One ; 7(4): e35218, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511985

RESUMO

Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection. Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression of specific two-component systems.


Assuntos
Macrófagos/microbiologia , Streptococcus pyogenes/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Streptococcus pyogenes/patogenicidade , Transcriptoma , Virulência
13.
PLoS Negl Trop Dis ; 5(12): e1428, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22163060

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in developing countries, where it accounts for millions of infections and hundreds of thousands of deaths annually. While vaccine development to prevent diarrheal illness due to ETEC is feasible, extensive effort is needed to identify conserved antigenic targets. Pathogenic Escherichia coli, including ETEC, use the autotransporter (AT) secretion mechanism to export virulence factors. AT proteins are comprised of a highly conserved carboxy terminal outer membrane beta barrel and a surface-exposed amino terminal passenger domain. Recent immunoproteomic studies suggesting that multiple autotransporter passenger domains are recognized during ETEC infection prompted the present studies. METHODOLOGY: Available ETEC genomes were examined to identify AT coding sequences present in pathogenic isolates, but not in the commensal E. coli HS strain. Passenger domains of the corresponding autotransporters were cloned and expressed as recombinant antigens, and the immune response to these proteins was then examined using convalescent sera from patients and experimentally infected mice. PRINCIPAL FINDINGS: Potential AT genes shared by ETEC strains, but absent in the E. coli commensal HS strain were identified. Recombinant passenger domains derived from autotransporters, including Ag43 and an AT designated pAT, were recognized by antibodies from mice following intestinal challenge with H10407, and both Ag43 and pAT were identified on the surface of ETEC by flow cytometry. Likewise, convalescent sera from patients with ETEC diarrhea recognized Ag43 and pAT, suggesting that these proteins are expressed during both experimental and naturally occurring ETEC infections and that they are immunogenic. Vaccination of mice with recombinant passenger domains from either pAT or Ag43 afforded protection against intestinal colonization with ETEC. CONCLUSIONS: Passenger domains of conserved autotransporter proteins could contribute to protective immune responses that develop following infection with ETEC, and these antigens consequently represent potential targets to explore in vaccine development.


Assuntos
Antígenos de Bactérias/imunologia , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Simulação por Computador , Escherichia coli Enterotoxigênica/química , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vacinas contra Escherichia coli/genética , Vacinas contra Escherichia coli/metabolismo , Humanos , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 286(34): 29771-9, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21757737

RESUMO

Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Proteínas de Transporte/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Escherichia coli Enterotoxigênica/patogenicidade , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Animais , Aderência Bacteriana/fisiologia , Toxinas Bacterianas/genética , Proteínas de Transporte/genética , Escherichia coli Enterotoxigênica/genética , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Vacinas contra Escherichia coli/genética , Vacinas contra Escherichia coli/metabolismo , Camundongos , Peptídeo Hidrolases , Transporte Proteico/fisiologia
15.
J Immunol ; 186(5): 3156-63, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21282506

RESUMO

Host immunogenetic variations strongly influence the severity of group A streptococcus sepsis by modulating responses to streptococcal superantigens (Strep-SAgs). Although HLA-II-DR15/DQ6 alleles strongly protect against severe sepsis, HLA-II-DR14/DR7/DQ5 alleles significantly increase the risk for toxic shock syndrome. We found that, regardless of individual variations in TCR-Vß repertoires, the presentation of Strep-SAgs by the protective HLA-II-DR15/DQ6 alleles significantly attenuated proliferative responses to Strep-SAgs, whereas their presentation by the high-risk alleles augmented it. Importantly, HLA-II variations differentially polarized cytokine responses to Strep-SAgs: the presentation of Strep-SAgs by HLA-II-DR15/DQ6 alleles elicited significantly higher ratios of anti-inflammatory cytokines (e.g., IL-10) to proinflammatory cytokines (e.g., IFN-γ) than did their presentation by the high-risk HLA-II alleles. Adding exogenous rIL-10 significantly attenuated responses to Strep-SAgs presented by the high-risk HLA-II alleles but did not completely block the response; instead, it reduced it to a level comparable to that seen when these superantigens were presented by the protective HLA-II alleles. Furthermore, adding neutralizing anti-IL-10 Abs augmented Strep-SAg responses in the presence of protective HLA-II alleles to the same level as (but no higher than) that seen when the superantigens were presented by the high-risk alleles. Our findings provide a molecular basis for the role of HLA-II allelic variations in modulating streptococcal sepsis outcomes and suggest the presence of an internal control mechanism that maintains superantigen responses within a defined range, which helps to eradicate the infection while attenuating pathological inflammatory responses that can inflict more harm than the infection itself.


Assuntos
Polaridade Celular/imunologia , Citocinas/genética , Predisposição Genética para Doença/genética , Variação Genética/imunologia , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/fisiologia , Linhagem Celular Transformada , Polaridade Celular/genética , Citocinas/biossíntese , Regulação Bacteriana da Expressão Gênica/imunologia , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Subtipos Sorológicos de HLA-DR , Antígeno HLA-DR7/genética , Humanos , Receptores de Antígenos de Linfócitos T/biossíntese , Choque Séptico/genética , Choque Séptico/terapia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/terapia , Streptococcus pyogenes/isolamento & purificação
16.
J Innate Immun ; 2(6): 596-606, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20814186

RESUMO

Group A Streptococcus (GAS) causes rare but life-threatening syndromes of necrotizing fasciitis and toxic shock-like syndrome in humans. The GAS serotype M1T1 clone has globally disseminated, and mutations in the control of virulence regulatory sensor kinase (covRS) operon correlate with severe invasive disease. Here, a cohort of non-M1 GAS was screened to determine whether mutation in covRS triggers systemic dissemination in divergent M serotypes. A GAS disease model defining parameters governing invasive propensity of differing M types is proposed. The vast majority of GAS infection is benign. Nonetheless, many divergent M types possess limited capacity to cause invasive infection. M1T1 GAS readily switch to a covRS mutant form that is neutrophil resistant and frequently associated with systemic infection. Whilst non-M1 GAS are shown in this study to less frequently accumulate covRS mutations in vivo, such mutants are isolated from invasive infections and exhibit neutrophil resistance and enhanced virulence. The reduced capacity of non-M1 GAS to switch to the hypervirulent covRS mutant form provides an explanation for the comparatively less frequent isolation of non-M1 serotypes from invasive human infections.


Assuntos
DNA Bacteriano/análise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neutrófilos/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/fisiologia , Animais , Células Cultivadas , Análise Mutacional de DNA , Progressão da Doença , Teste de Complementação Genética , Histidina Quinase , Humanos , Evasão da Resposta Imune/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Mutação/genética , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/fisiopatologia , Streptococcus pyogenes/patogenicidade , Virulência/genética
17.
PLoS One ; 5(4): e9798, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20418946

RESUMO

The onset of infection and the switch from primary to secondary niches are dramatic environmental changes that not only alter bacterial transcriptional programs, but also perturb their sociomicrobiology, often driving minor subpopulations with mutant phenotypes to prevail in specific niches. Having previously reported that M1T1 Streptococcus pyogenes become hypervirulent in mice due to selection of mutants in the covRS regulatory genes, we set out to dissect the impact of these mutations in vitro and in vivo from the impact of other adaptive events. Using a murine subcutaneous chamber model to sample the bacteria prior to selection or expansion of mutants, we compared gene expression dynamics of wild type (WT) and previously isolated animal-passaged (AP) covS mutant bacteria both in vitro and in vivo, and we found extensive transcriptional alterations of pathoadaptive and metabolic gene sets associated with invasion, immune evasion, tissue-dissemination, and metabolic reprogramming. In contrast to the virulence-associated differences between WT and AP bacteria, Phenotype Microarray analysis showed minor in vitro phenotypic differences between the two isogenic variants. Additionally, our results reflect that WT bacteria's rapid host-adaptive transcriptional reprogramming was not sufficient for their survival, and they were outnumbered by hypervirulent covS mutants with SpeB(-)/Sda(high) phenotype, which survived up to 14 days in mice chambers. Our findings demonstrate the engagement of unique regulatory modules in niche adaptation, implicate a critical role for bacterial genetic heterogeneity that surpasses transcriptional in vivo adaptation, and portray the dynamics underlying the selection of hypervirulent covS mutants over their parental WT cells.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Seleção Genética , Streptococcus pyogenes/genética , Animais , Evolução Biológica , Interações Hospedeiro-Patógeno/genética , Camundongos , Streptococcus pyogenes/patogenicidade , Virulência/genética
18.
J Infect Dis ; 201(6): 855-65, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20151844

RESUMO

Group A streptococci (GAS) may engage different sets of virulence strategies, depending on the site of infection and host context. We previously isolated 2 phenotypic variants of a globally disseminated M1T1 GAS clone: a virulent wild-type (WT) strain, characterized by a SpeB(+)/SpeA(-)/Sda1(low) phenotype, and a hypervirulent animal-passaged (AP) strain, better adapted to survive in vivo, with a SpeB(-)/SpeA(+)/Sda1(high) phenotype. This AP strain arises in vivo due to the selection of bacteria with mutations in covS, the sensor part of a key 2-component regulatory system, CovR/S. To determine whether covS mutations explain the hypervirulence of the AP strain, we deleted covS from WT bacteria (DeltaCovS) and were able to simulate the hypervirulence and gene expression phenotype of naturally selected AP bacteria. Correction of the covS mutation in AP bacteria reverted them back to the WT phenotype. Our data confirm that covS plays a direct role in regulating GAS virulence.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/genética , Desoxirribonuclease I/biossíntese , Desoxirribonuclease I/genética , Exotoxinas/biossíntese , Exotoxinas/genética , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Estimativa de Kaplan-Meier , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos CBA , Mutação , Fenótipo , Reação em Cadeia da Polimerase , Infecções Estreptocócicas/microbiologia , Virulência
19.
PLoS Pathog ; 4(4): e1000042, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18421376

RESUMO

Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL) on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%-30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases.


Assuntos
Mapeamento Cromossômico/métodos , Predisposição Genética para Doença , Sepse/genética , Infecções Estreptocócicas/genética , Streptococcus pyogenes/patogenicidade , Animais , Bacteriemia , Feminino , Regulação Bacteriana da Expressão Gênica , Genômica , Genótipo , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Locos de Características Quantitativas , Recombinação Genética , Sepse/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia
20.
PLoS One ; 3(12): e4102, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19116661

RESUMO

Epidemiological studies of group A streptococcus (GAS) have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC's, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS.


Assuntos
Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Streptococcus/patogenicidade , Alelos , Animais , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus/genética , Streptococcus/imunologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...