Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Genomics Proteomics ; 21(4): 368-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944420

RESUMO

BACKGROUND/AIM: Aggressive breast cancer (BC) cells show high expression of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. In breast cancer cells in which mesenchymal transformation was induced, ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression increased significantly. Therefore, we investigated whether there is a correlation between expression of ARHGAP29 and tumor progression in BC. Since tamoxifen-resistant BC cells exhibit increased mesenchymal properties and invasiveness, we additionally investigated the relationship between ARHGAP29 and increased invasion rate in tamoxifen resistance. The question arises as to whether ARHGAP29 is a suitable prognostic marker for the progression of BC. MATERIALS AND METHODS: Tissue microarrays were used to investigate expression of ARHGAP29 in BC and adjacent normal breast tissues. Knockdown experiments using siRNA were performed to investigate the influence of ARHGAP29 and the possible downstream actors RhoC and pAKT1 on invasive growth of tamoxifen-resistant BC spheroids in vitro. RESULTS: Expression of ARHGAP29 was frequently increased in BC tissues compared to adjacent normal breast tissues. In addition, there was evidence of a correlation between high ARHGAP29 expression and advanced clinical tumor stage. Tamoxifen-resistant BC cells show a significantly higher expression of ARHGAP29 compared to their parental wild-type cells. After knockdown of ARHGAP29 in tamoxifen-resistant BC cells, expression of RhoC was significantly reduced. Further, expression of pAKT1 decreased significantly. Invasive growth of three-dimensional tamoxifen-resistant BC spheroids was reduced after knockdown of ARHGAP29. This could be partially reversed by AKT1 activator SC79. CONCLUSION: Expression of ARHGAP29 correlates with the clinical tumor parameters of BC patients. In addition, ARHGAP29 is involved in increased invasiveness of tamoxifen-resistant BC cells. ARHGAP29 alone or in combination with its downstream partners RhoC and pAKT1 could be suitable prognostic markers for BC progression.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Proteínas Ativadoras de GTPase , Invasividade Neoplásica , Tamoxifeno , Humanos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Prognóstico , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proteína de Ligação a GTP rhoC/metabolismo , Proteína de Ligação a GTP rhoC/genética
2.
Cells ; 9(12)2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291460

RESUMO

Aggressive and mesenchymal-transformed breast cancer cells show high expression levels of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression significantly increased after the induction of mesenchymal transformation in breast cancer cells. Therefore, we investigated the influence of ARHGAP29 on the invasiveness of aggressive and mesenchymal-transformed breast cancer cells. After knock-down of ARHGAP29 using siRNA, invasion of HCC1806, MCF-7-EMT, and T-47D-EMT breast cancer cells was significantly reduced. This could be explained by reduced inhibition of RhoA and a consequent increase in stress fiber formation. Proliferation of the breast cancer cell line T-47D-EMT was slightly increased by reduced expression of ARHGAP29, whereas that of HCC1806 and MCF-7-EMT significantly increased. Using interaction analyses we found that AKT1 is a possible interaction partner of ARHGAP29. Therefore, the expression of AKT1 after siRNA knock-down of ARHGAP29 was tested. Reduced ARHGAP29 expression was accompanied by significantly reduced AKT1 expression. However, the ratio of active pAKT1 to total AKT1 remained unchanged or was significantly increased after ARHGAP29 knock-down. Our results show that ARHGAP29 could be an important factor in the invasion of aggressive and mesenchymal-transformed breast cancer cells. Further research is required to fully understand the underlying mechanisms.


Assuntos
Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Proteínas Ativadoras de GTPase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Células MCF-7 , Células-Tronco Mesenquimais , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...