Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2309735, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618655

RESUMO

Solid oxide fuel cells (SOFCs) are paving the way to clean energy conversion, relying on efficient oxygen-ion conductors with high ionic conductivity coupled with a negligible electronic contribution. Doped rare earth aluminates are promising candidates for SOFC electrolytes due to their high ionic conductivity. However, they often suffer from p-type electronic conductivity at operating temperatures above 500 °C under oxidizing conditions caused by the incorporation of oxygen into the lattice. High entropy materials are a new class of materials conceptualized to be stable at higher temperatures due to their high configurational entropy. Introducing this concept to rare earth aluminates can be a promising approach to stabilize the lattice by shifting the stoichiometric point of the oxides to higher oxygen activities, and thereby, reducing the p-type electronic conductivity in the relevant oxygen partial pressure range. In this study, the high entropy oxide (Gd,La,Nd,Pr,Sm)AlO3 is synthesized and doped with Ca. The Ca-doped (Gd,La,Nd,Pr,Sm)AlO3 compounds exhibit a higher ionic conductivity than most of the corresponding Ca-doped rare earth aluminates accompanied by a reduction of the p-type electronic conductivity contribution typically observed under oxidizing conditions. In light of these findings, this study introduces high entropy aluminates as a promising candidate for SOFC electrolytes.

2.
ACS Nano ; 17(6): 5329-5339, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36913300

RESUMO

High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.

3.
Adv Mater ; 35(2): e2207436, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36383029

RESUMO

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd0.25 La0.25 Nd0.25 Sm0.25 )1- x Srx MnO3 (x = 0-0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states-insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic-coexisting or/and competing as a result of hole doping and multi-cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best-known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.

4.
Adv Mater ; 33(43): e2102301, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34514669

RESUMO

Exploring the vast compositional space offered by multicomponent systems or high entropy materials using the traditional route of materials discovery, one experiment at a time, is prohibitive in terms of cost and required time. Consequently, the development of high-throughput experimental methods, aided by machine learning and theoretical predictions will facilitate the search for multicomponent materials in their compositional variety. In this study, high entropy oxides are fabricated and characterized using automated high-throughput techniques. For intuitive visualization, a graphical phase-property diagram correlating the crystal structure, the chemical composition, and the band gap are introduced. Interpretable machine learning models are trained for automated data analysis and to speed up data comprehension. The establishment of materials libraries of multicomponent systems correlated with their properties (as in the present work), together with machine learning-based data analysis and theoretical approaches are opening pathways toward virtual development of novel materials for both functional and structural applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...