Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Res Commun ; 3(3): 361-370, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36875157

RESUMO

Lynch syndrome (LS) is the most common hereditary cancer syndrome. Early diagnosis improves prognosis and reduces health care costs, through existing cancer surveillance methods. The problem is finding and diagnosing the cancer predisposing genetic condition. The current workup involves a complex array of tests that combines family cancer history and clinical phenotypes with tumor characteristics and sequencing data, followed by a challenging task to interpret the found variant(s). On the basis of the knowledge that an inherited mismatch repair (MMR) deficiency is a hallmark of LS, we have developed and validated a functional MMR test, DiagMMR, that detects inherited MMR deficiency directly from healthy tissue without need of tumor and variant information. The validation included 119 skin biopsies collected from clinically pathogenic MMR variant carriers (MSH2, MSH6) and controls, and was followed by a small clinical pilot study. The repair reaction was performed on proteins extracted from primary fibroblasts and the interpretation was based on the MMR capability of the sample in relation to cutoff, which distinguishes MMR proficient (non-LS) from MMR deficient (LS) function. The results were compared with the reference standard (germline NGS). The test was shown to have exceptional specificity (100%) with high sensitivity (89%) and accuracy (97%). The ability to efficiently distinguish LS carriers from controls was further shown with a high area under the receiving operating characteristic (AUROC) value (0.97). This test offers an excellent tool for detecting inherited MMR deficiency linked to MSH2 or MSH6 and can be used alone or with conventional tests to recognize genetically predisposed individuals. Significance: Clinical validation of DiagMMR shows high accuracy in distinguishing individuals with hereditary MSH2 or MSH6 MMR deficiency (i.e., LS). The method presented overcomes challenges faced by the complexity of current methods and can be used alone or with conventional tests to improve the ability to recognize genetically predisposed individuals.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Proteína 2 Homóloga a MutS/genética , Projetos Piloto , Neoplasias Colorretais/genética , Predisposição Genética para Doença
2.
Hum Mutat ; 38(1): 64-77, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27629256

RESUMO

Pathogenicity assessment of DNA variants in disease genes to explain their clinical consequences is an integral component of diagnostic molecular testing. The International Society for Gastrointestinal Hereditary Tumors (InSiGHT) has developed specific criteria for the interpretation of mismatch repair (MMR) gene variants. Here, we performed a systematic investigation of 24 MLH1 and MSH2 variants. The assessments were done by analyzing population frequency, segregation, tumor molecular characteristics, RNA effects, protein expression levels, and in vitro MMR activity. Classifications were confirmed for 15 variants and changed for three, and for the first time determined for six novel variants. Overall, based on our results, we propose the introduction of some refinements to the InSiGHT classification rules. The proposed changes have the advantage of homogenizing the InSIGHT interpretation criteria with those set out by the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium for the BRCA1/BRCA2 genes. We also observed that the addition of only few clinical data was sufficient to obtain a more stable classification for variants considered as "likely pathogenic" or "likely nonpathogenic." This shows the importance of obtaining as many as possible points of evidence for variant interpretation, especially from the clinical setting.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Alelos , Processamento Alternativo , Biomarcadores Tumorais , Mapeamento Cromossômico , Bases de Dados Genéticas , Frequência do Gene , Ligação Genética , Genótipo , Humanos , Imuno-Histoquímica , Instabilidade de Microssatélites , Repetições de Microssatélites , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Mutação , Fenótipo , Regiões Promotoras Genéticas
3.
FEBS Lett ; 590(23): 4233-4241, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27805738

RESUMO

High fidelity of genome duplication is ensured by cooperation of polymerase proofreading and mismatch repair (MMR) activities. Here, we show that human mismatch recognizing proteins MutS homolog 2 (MSH2) and MSH6 copurify and interact with replicative Pol α. This enzyme also is the replicative primase and replicates DNA with poor fidelity. We show that MSH2 associates with known human replication origins with different dynamics than DNA polymerase (Pol α). Furthermore, we explored the potential functional role of Pol α in the mismatch repair reaction using an in vitro mismatch repair assay and observed that Pol α promotes mismatch repair. Taken together, we show that human Pol α interacts with MSH2-MSH6 complex and propose that this interaction occurs during the mismatch repair reaction.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Replicação do DNA , Células HeLa , Humanos , Ligação Proteica , Especificidade por Substrato
4.
Hum Mutat ; 35(9): 1123-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24924810

RESUMO

Lynch syndrome (LS), the most common familial colon cancer, is associated with mismatch repair (MMR) malfunction. As mutation carriers inherit one normal and one defected MMR gene allele, cancer risk can be considered as limited amount of normal MMR gene product. How reductions in different MMR gene expressions affect MMR capability is, however, not known. The in vitro MMR assay is a method for the pathogenicity assessment of MMR gene variants causing functional or expressional defects and thus also suitable to evaluate the effects of reduced expression of normal mRNA. Here, the assay was applied to quantify repair efficiencies of human cells retaining varying expression levels (25%/50%/75%) of the main LS susceptibility genes MLH1, MSH2, or MSH6. Compared with the shRNA knockdown control, already a 50% reduction in mRNA levels could be detected as decreased MMR function although without statistical significance in MLH1. In MSH2 and MLH1, total loss of MMR was achieved with 25% expression, whereas in MSH6 and MSH2, the repair capability decreased significantly already with 75% expression. Our results provide a preliminary indication of relative expressions required for wild-type function and suggest that the in vitro MMR assay could be used to recognize expression levels indicative of LS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Linhagem Celular , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Proteína 1 Homóloga a MutL , Interferência de RNA
5.
Hum Mutat ; 33(8): 1294-301, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22581703

RESUMO

Mismatch repair (MMR) malfunction causes the accumulation of mismatches in the genome leading to genomic instability and cancer. The inactivation of an MMR gene (MSH2, MSH6, MLH1, or PMS2) with an inherited mutation causes Lynch syndrome (LS), a dominant susceptibility to cancer. MMR gene variants of uncertain significance (VUS) may be pathogenic mutations, which cause LS, may result in moderately increased cancer risks, or may be harmless polymorphisms. Our study suggests that an inherited MMR VUS individually assessed as proficient may, however, in a pair with another MMR VUS found in the same colorectal cancer (CRC) patient have a concomitant contribution to the MMR deficiency. Here, eight pairs of MMR gene variants found in cancer patients were functionally analyzed in an in vitro MMR assay. Although the other pairs do not suggest a compound deficiency, the MSH2 VUS pair c.380A>G/c.982G>C (p.Asn127Ser/p.Ala328Pro), which nearly halves the repair capability of the wild-type MSH2 protein, is presumed to increase the cancer risk considerably. Moreover, two MSH6 variants, c.1304T>C (p.Leu435Pro) and c.1754T>C (p.Leu585Pro), were shown to be MMR deficient. The role of one of the most frequently reported MMR gene VUS, MSH2 c.380A>G (p.Asn127Ser), is especially interesting because its concomitant defect with another variant could finally explain its recurrent occurrence in CRC patients.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Proteína 2 Homóloga a MutS/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Multimerização Proteica/genética , Multimerização Proteica/fisiologia
6.
Fam Cancer ; 10(3): 515-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21431882

RESUMO

Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS family carrying VUS in both MSH2 (c.2768T>A, p.Val923Glu) and MSH6 (c.3563G>A, p.Ser1188Asn). Two colorectal cancer (CRC) patients were studied for mutations and identified as carriers of both variants. In spite of a relatively high mean age of cancer onset (59.5 years) in the family, many CRC patients and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence that instead of MSH2 p.Val923Glu the MSH6 p.Ser1188Asn variant is completely MMR-deficient, the present study confirms the previous findings, and suggests that MSH6 (c.3563G>A, p.Ser1188Asn) is the pathogenic mutation in the family. Moreover, our results strongly support the strategy to functionally assess all identified VUS before predictive gene testing and genetic counseling are offered to a family.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Proteínas de Ligação a DNA/genética , Proteína 2 Homóloga a MutS/genética , Mutação/genética , Adulto , Idoso , Reparo de Erro de Pareamento de DNA/genética , Feminino , Humanos , Técnicas Imunoenzimáticas , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Linhagem , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...