Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700031

RESUMO

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Assuntos
Biocatálise , Catecol O-Metiltransferase , Flavonoides , Proteínas Fúngicas , Cogumelos Shiitake , Cogumelos Shiitake/enzimologia , Cogumelos Shiitake/genética , Cogumelos Shiitake/química , Cogumelos Shiitake/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Catecol O-Metiltransferase/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Flavonoides/química , Flavonoides/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Micélio/enzimologia , Micélio/genética , Micélio/química , Micélio/metabolismo , Especificidade por Substrato
2.
J Agric Food Chem ; 71(21): 8112-8120, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37196237

RESUMO

Odor-active fatty aldehydes are important compounds for the flavor and fragrance industry. By a coupled enzymatic reaction using an α-dioxygenase (α-DOX) and an aldehyde dehydrogenase (FALDH), scarcely available aldehydes from the biotransformation of margaroleic acid [17:1(9Z)] were characterized and have shown highly interesting odor profiles, including citrus-like, soapy, herbaceous, and savory notes. In particular, (Z)-8-hexadecenal and (Z)-7-pentadecenal exhibited notable meaty odor characteristics. Submerged cultivation of Mortierella hyalina revealed the accumulation of the above-mentioned, naturally uncommon fatty acid 17:1(9Z). Its production was significantly increased by the modulation of culture conditions, whereas the highest accumulation was observed after 4 days at 24 °C and l-isoleucine supplementation. The lipase-, α-DOX-, and FALDH-mediated biotransformation of M. hyalina lipid extract resulted in a complex aldehyde mixture with a high aldehyde yield of ∼50%. The odor qualities of the formed aldehydes were assessed by means of gas chromatography-olfactometry, and several of the obtained fatty aldehydes have been sensorially described for the first time. To assess the aldehyde mixture's potential as a flavor ingredient, a sensory evaluation was conducted. The obtained product exhibited intense citrus-like, green, and soapy odor impressions.


Assuntos
Dioxigenases , Odorantes , Odorantes/análise , Aldeídos/metabolismo , Ácidos Graxos/metabolismo , Cromatografia Gasosa
3.
Appl Microbiol Biotechnol ; 106(18): 6095-6107, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36040487

RESUMO

Aldehydes represent a versatile and favored class of flavoring substances. A biocatalytic access to odor-active aldehydes was developed by conversion of fatty acids with two enzymes of the α-dioxygenase pathway. The recombinant enzymes α-dioxygenase (α-DOX) originating from Crocosphaera subtropica and fatty aldehyde dehydrogenase (FALDH) from Vibrio harveyi were heterologously expressed in E. coli, purified, and applied in a coupled (tandem) repetitive reaction. The concept was optimized in terms of number of reaction cycles and production yields. Up to five cycles and aldehyde yields of up to 26% were achieved. Afterward, the approach was applied to sea buckthorn pulp oil as raw material for the enzyme catalyzed production of flavoring/fragrance ingredients based on complex aldehyde mixtures. The most abundant fatty acids in sea buckthorn pulp oil, namely palmitic, palmitoleic, oleic, and linoleic acid, were used as substrates for further biotransformation experiments. Various aldehydes were identified, semi-quantified, and sensorially characterized by means of headspace-solid phase microextraction-gas chromatography-mass spectrometry-olfactometry (HS-SPME-GC-MS-O). Structural validation of unsaturated aldehydes in terms of double-bond positions was performed by multidimensional high-resolution mass spectrometry experiments of their Paternò-Büchi (PB) photoproducts. Retention indices and odor impressions of inter alia (Z,Z)-5,8-tetradecadienal (Z,Z)-6,9-pentadecadienal, (Z)-8-pentadecenal, (Z)-4-tridecenal, (Z)-6-pentadecenal, and (Z)-8-heptadecenal were determined for the first time. KEY POINTS: • Coupled reaction of Csα-DOX and VhFALDH yields chain-shortened fatty aldehydes. • Odors of several Z-unsaturated fatty aldehydes are described for the first time. • Potential for industrial production of aldehyde-based odorants from natural sources.


Assuntos
Dioxigenases , Odorantes , Aldeídos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Odorantes/análise
4.
Food Chem X ; 5: 100072, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31891155

RESUMO

The current study highlights the effects of intra- and interspecific hybrid yeasts of the genus Saccharomyces (S.) on the alcoholic fermentation and formation of aroma compounds in cool climate Riesling wines. Three different hybrid yeasts: S. cerevisiae × S. paradoxus (SC × SP), S. cerevisiae × S. kudriavzevii (SC × SK) and S. cerevisiae var. cerevisiae × S. cerevisiae var. bayanus (SC × SB) were investigated. The species S. cerevisiae var. bayanus (SB) was chosen as control variant. It has been demonstrated that the hybrid yeasts have the ability to preserve positive properties while, suppressing undesired properties from the parental yeast species. The hybrid SC × SK showed an increase of desired acetate esters and monoterpenes. The concentrations of higher alcohols were higher in wines fermented by SC × SP, compared to the other variants. SC × SP fermentations resulted in decreased concentrations of l-malate and sulphites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA