Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Cells ; 29(6): 486-502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682256

RESUMO

Quality-based protein production and degradation in the endoplasmic reticulum (ER) are essential for eukaryotic cell survival. During protein maturation in the ER, misfolded or unassembled proteins are destined for disposal through a process known as ER-associated degradation (ERAD). EDEM1 is an ERAD-accelerating factor whose gene expression is upregulated by the accumulation of aberrant proteins in the ER, known as ER stress. Although the role of EDEM1 in ERAD has been studied in detail, the turnover of EDEM1 by intracellular degradation machinery, including the proteasome and autophagy, is not well understood. To clarify EDEM1 regulation in the protein level, degradation mechanism of EDEM1 was examined. Our results indicate that both ERAD and autophagy degrade EDEM1 alike misfolded degradation substrates, although each degradation machinery targets EDEM1 in different folded states of proteins. We also found that ERAD factors, including the SEL1L/Hrd1 complex, YOD1, XTP3B, ERdj3, VIMP, BAG6, and JB12, but not OS9, are involved in EDEM1 degradation in a mannose-trimming-dependent and -independent manner. Our results suggest that the ERAD accelerating factor, EDEM1, is turned over by the ERAD itself, similar to ERAD clients.


Assuntos
Autofagia , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Dobramento de Proteína , Células HEK293 , Estresse do Retículo Endoplasmático , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas
2.
Int J Mol Sci ; 21(12)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545905

RESUMO

Spinocerebellar ataxia (SCA) is one of the most severe neurodegenerative diseases and is often associated with misfolded protein aggregates derived from the genetic mutation of related genes. Recently, mutations in CD10 such as C143Y have been identified as SCA type 43. CD10, also known as neprilysin or neuroendopeptidase, digests functional neuropeptides, such as amyloid beta, in the extracellular region. In this study, we explored the cellular behavior of CD10 C143Y to gain an insight into the functional relationship of the mutation and SCA pathology. We found that wild-type CD10 is expressed on the plasma membrane and exhibits endopeptidase activity in a cultured cell line. CD10 C143Y, however, forms a disulfide bond-mediated oligomer that does not appear by the wild-type CD10. Furthermore, the CD10 C143Y mutant was retained in the endoplasmic reticulum (ER) by the molecular chaperone BiP and was degraded through the ER-associated degradation (ERAD) process, in which representative ERAD factors including EDEM1, SEL1L, and Hrd1 participate in the degradation. Suppression of CD10 C143Y ERAD recovers intracellular transport but not enzymatic activity. Our results indicate that the C143Y mutation in CD10 negatively affects protein maturation and results in ER retention and following ERAD. These findings provide beneficial insight into SCA type 43 pathology.


Assuntos
Mutação , Neprilisina/química , Neprilisina/metabolismo , Ataxias Espinocerebelares/genética , Membrana Celular/metabolismo , Cisteína/genética , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Células HeLa , Humanos , Neprilisina/genética , Oligopeptídeos/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...