Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 20(6): 739-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25656238

RESUMO

Kir7.1 is an inwardly rectifying potassium channel that has been implicated in controlling the resting membrane potential of the myometrium. Abnormal uterine activity in pregnancy plays an important role in postpartum hemorrhage, and novel therapies for this condition may lie in manipulation of membrane potential. This work presents an assay development and screening strategy for identifying novel inhibitors of Kir7.1. A cell-based automated patch-clamp electrophysiology assay was developed using the IonWorks Quattro (Molecular Devices, Sunnyvale, CA) system, and the iterative optimization is described. In total, 7087 compounds were tested, with a hit rate (>40% inhibition) of 3.09%. During screening, average Z' values of 0.63 ± 0.09 were observed. After chemistry triage, lead compounds were resynthesized and activity confirmed by IC50 determinations. The most potent compound identified (MRT00200769) gave rise to an IC50 of 1.3 µM at Kir7.1. Compounds were assessed for selectivity using the inwardly rectifying potassium channel Kir1.1 (ROMK) and hERG (human Ether-à-go-go Related Gene). Pharmacological characterization of known Kir7.1 inhibitors was also carried out and analogues of VU590 tested to assess selectivity at Kir7.1.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Automação Laboratorial , Células CHO , Cricetulus , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Técnicas de Patch-Clamp , Reprodutibilidade dos Testes
2.
EMBO Mol Med ; 6(9): 1161-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056913

RESUMO

Abnormal uterine activity in pregnancy causes a range of important clinical disorders, including preterm birth, dysfunctional labour and post-partum haemorrhage. Uterine contractile patterns are controlled by the generation of complex electrical signals at the myometrial smooth muscle plasma membrane. To identify novel targets to treat conditions associated with uterine dysfunction, we undertook a genome-wide screen of potassium channels that are enriched in myometrial smooth muscle. Computational modelling identified Kir7.1 as potentially important in regulating uterine excitability during pregnancy. We demonstrate Kir7.1 current hyper-polarizes uterine myocytes and promotes quiescence during gestation. Labour is associated with a decline, but not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral expression of miRNA was sufficient to increase uterine contractile force and duration significantly. Conversely, overexpression of Kir7.1 inhibited uterine contractility. Finally, we demonstrate that the Kir7.1 inhibitor VU590 as well as novel derivative compounds induces profound, long-lasting contractions in mouse and human myometrium; the activity of these inhibitors exceeds that of other uterotonic drugs. We conclude Kir7.1 regulates the transition from quiescence to contractions in the pregnant uterus and may be a target for therapies to control uterine contractility.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Contração Uterina/metabolismo , Animais , Linhagem Celular , Cricetinae , Cricetulus , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Trabalho de Parto/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Gravidez , Contração Uterina/genética
3.
Neuroreport ; 17(18): 1877-81, 2006 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-17179862

RESUMO

Astrocytes express mainly metabotropic glutamate receptor 3 and metabotropic glutamate receptor 5 receptor subtypes, which show opposing effects on cellular proliferation upon activation. In this study, we investigated the mechanisms by which activation of these receptors modulates astrocyte proliferation. Activation of metabotropic glutamate receptor 5 with (S)-3,5-dihydroxyphenylglycine increased phospholipase D activity in astrocytes as well as astrocyte proliferation. The 3,5-dihydroxyphenylglycine-induced proliferation was inhibited in the presence of the metabotropic glutamate receptor 5 antagonist (2-methyl-6-(phenylethynyl)pyridine), the protein kinase C inhibitor GF109203X, brefeldin A and 1-butanol. Activation of metabotropic glutamate receptor 3 with (2'S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine-IV (DCG-IV) inhibited astrocyte proliferation without affecting metabotropic glutamate receptor 5-mediated phospholipase D activity. Metabotropic glutamate receptor 3 activation, however, only partially inhibited metabotropic glutamate receptor 5-mediated proliferation. In conclusion, metabotropic glutamate receptor 5 stimulates astrocyte proliferation via a protein kinase C-phospholipase D-phosphatidic acid-dependent pathway, whereas metabotropic glutamate receptor 3-mediated inhibition of astrocyte proliferation does not involve phospholipase D, and is independent of metabotropic glutamate receptor 5-mediated effects.


Assuntos
Astrócitos/fisiologia , Proliferação de Células , Receptores de Glutamato/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Cicloleucina/análogos & derivados , Cicloleucina/farmacologia , Ciclopropanos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicerofosfolipídeos/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Indóis/farmacologia , Maleimidas/farmacologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Fosfolipase D/metabolismo , Piridinas/farmacologia , Ratos , Ratos Wistar , Trítio/metabolismo
4.
Physiol Genomics ; 24(2): 86-96, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16278278

RESUMO

P/Q-type calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (alpha1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 transcripts, are incompletely defined for specific brain regions and types of brain neurons. Using RT-PCR and splice variant-specific primers, we have identified multiple CaV2.1 transcript variants defined by different pairs of splice events in the cerebellum of adult rat. We have uncovered new splice variations between exons 28 and 34 (some of which predict a premature stop codon) and a new variation in exon 47 (which predicts a novel extended COOH-terminus). Single cell RT-PCR reveals that each individual cerebellar Purkinje neuron also expresses multiple alternative CaV2.1 transcripts, but the assortment is smaller than in the cerebellum. Two of these variants encode different extended COOH-termini which are not the same as those previously reported in Purkinje cells of the mouse. Our patch-clamp recordings show that calcium channel currents in the soma and dendrites of Purkinje cells are largely inhibited by a concentration of omega-agatoxin IVA selective for P-type over Q-type channels, suggesting that the different transcripts may form phenotypic variants of P-type calcium channels in Purkinje cells. These results expand the known diversity of CaV2.1 transcripts in cerebellar Purkinje cells, and propose the selective expression of distinct assortments of CaV2.1 transcripts in different brain neurons and species.


Assuntos
Processamento Alternativo/genética , Canais de Cálcio Tipo N/genética , Cerebelo/citologia , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Canais de Cálcio Tipo N/química , Primers do DNA , DNA Complementar/genética , Éxons/genética , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , ômega-Agatoxina IVA/farmacologia
5.
Glia ; 46(1): 1-7, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-14999808

RESUMO

Several excitatory amino acid ligands were found potently to inhibit forskolin-stimulated cAMP accumulation in rat cultured cerebellar astrocytes: L-cysteine sulfinic acid (L-CSA) = L-aspartate > L-glutamate >/= the glutamate uptake inhibitor, L-PDC. This property did not reflect activation of conventional glutamate receptors, since the selective ionotropic glutamate receptor agonists NMDA, AMPA, and kainate, as well as several mGlu receptor agonists [(1S,3R)-ACPD, (S)-DHPG, DCG-IV, L-AP4, L-quisqualate, and L-CCG-I], were without activity. In addition, the mGlu receptor antagonists, L-AP3, (S)-4CPG, Eglu, LY341495, (RS)-CPPG, and (S)-MCPG failed to reverse 30 microM glutamate-mediated inhibitory responses. L-PDC-mediated inhibition was abolished by the addition of the enzyme glutamate-pyruvate transaminase. This finding suggests that the effect of L-PDC is indirect and that it is mediated through endogenously released L-glutamate. Interestingly, L-glutamate-mediated inhibitory responses were resistant to pertussis toxin, suggesting that G(i)/G(o) type G proteins were not involved. However, inhibition of protein kinase C (PKC, either via the selective PKC inhibitor GF109203X or chronic PMA treatment) augmented glutamate-mediated inhibitory responses. Although mGlu3 receptors (which are negatively coupled to adenylyl cyclase) are expressed in astrocyte populations, in our study Western blot analysis indicated that this receptor type was not expressed in cerebellar astrocytes. We therefore suggest that cerebellar astrocytes express a novel mGlu receptor, which is negatively coupled to adenylyl cyclase, and possesses an atypical pharmacological profile.


Assuntos
Adenilil Ciclases/metabolismo , Astrócitos/metabolismo , Cerebelo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Colforsina/antagonistas & inibidores , Colforsina/farmacologia , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Aminoácidos Excitatórios/metabolismo , Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...