Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 8(4): e583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628621

RESUMO

Rubisco activase (Rca) is an essential photosynthetic enzyme that removes inhibitors from the catalytic sites of the carboxylating enzyme Rubisco. In wheat, Rca is composed of one longer 46 kDa α-isoform and two shorter 42 kDa ß-isoforms encoded by the genes TaRca1 and TaRca2. TaRca1 produces a single transcript from which a short 1ß-isoform is expressed, whereas two alternative transcripts are generated from TaRca2 directing expression of either a long 2α-isoform or a short 2ß-isoform. The 2ß isoform is similar but not identical to 1ß. Here, virus-induced gene silencing (VIGS) was used to silence the different TaRca transcripts. Abundance of the transcripts and the respective protein isoforms was then evaluated in the VIGS-treated and control plants. Remarkably, treatment with the construct specifically targeting TaRca1 efficiently decreased expression not only of TaRca1 but also of the two alternative TaRca2 transcripts. Similarly, specific targeting of the TaRca2 transcript encoding a long isoform TaRca2α resulted in silencing of both TaRca2 alternative transcripts. The corresponding protein isoforms decreased in abundance. These findings indicate concomitant down-regulation of TaRca1 and TaRca2 at both transcript and protein levels and may impact the feasibility of altering the relative abundance of Rca isoforms in wheat.

2.
New Phytol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584326

RESUMO

Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1-3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species. Here, we investigate the disruption of FIGL1 in tetraploid and hexaploid wheat as a potential strategy for modifying CO frequency/position. We analysed figl1 mutants and virus-induced gene silencing lines cytogenetically. Genetic mapping was performed in the hexaploid. FIGL1 prevents abnormal meiotic chromosome associations/fragmentation in both ploidies. It suppresses class II COs in the tetraploid such that CO/chiasma frequency increased 2.1-fold in a figl1 msh5 quadruple mutant compared with a msh5 double mutant. It does not appear to affect class I COs based on HEI10 foci counts in a hexaploid figl1 triple mutant. Genetic mapping in the triple mutant suggested no significant overall increase in total recombination across examined intervals but revealed large increases in specific individual intervals. Notably, the tetraploid figl1 double mutant was sterile but the hexaploid triple mutant was moderately fertile, indicating potential utility for wheat breeding.

4.
Mol Plant Microbe Interact ; 37(3): 171-178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170736

RESUMO

Crops are constantly exposed to pathogenic microbes. Rust fungi are examples of these harmful microorganisms, which have a major economic impact on wheat production. To protect themselves from pathogens like rust fungi, plants employ a multilayered immune system that includes immunoreceptors encoded by resistance genes. Significant efforts have led to the isolation of numerous resistance genes against rust fungi in cereals, especially in wheat. However, the evolution of virulence of rust fungi hinders the durability of resistance genes as a strategy for crop protection. Rust fungi, like other biotrophic pathogens, secrete an arsenal of effectors to facilitate infection, and these are the molecules that plant immunoreceptors target for pathogen recognition and mounting defense responses. When recognized, these effector proteins are referred to as avirulence (Avr) effectors. Despite the many predicted effectors in wheat rust fungi, only five Avr genes have been identified, all from wheat stem rust. Knowledge of the Avr genes and their variation in the fungal population will inform deployment of the most appropriate wheat disease-resistance genes for breeding and farming. The review provides an overview of methodologies as well as the validation techniques that have been used to characterize Avr effectors from wheat stem rust. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Basidiomycota , Melhoramento Vegetal , Basidiomycota/genética , Virulência/genética , Resistência à Doença/genética , Produtos Agrícolas , Doenças das Plantas/microbiologia
5.
Front Plant Sci ; 14: 1140824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206970

RESUMO

"Mutagenomics" is the combination of random mutagenesis, phenotypic screening, and whole-genome re-sequencing to uncover all tagged and untagged mutations linked with phenotypic changes in an organism. In this study, we performed a mutagenomics screen on the wheat pathogenic fungus Zymoseptoria tritici for altered morphogenetic switching and stress sensitivity phenotypes using Agrobacterium-mediated "random" T-DNA mutagenesis (ATMT). Biological screening identified four mutants which were strongly reduced in virulence on wheat. Whole genome re-sequencing defined the positions of the T-DNA insertion events and revealed several unlinked mutations potentially affecting gene functions. Remarkably, two independent reduced virulence mutant strains, with similarly altered stress sensitivities and aberrant hyphal growth phenotypes, were found to have a distinct loss of function mutations in the ZtSSK2 MAPKKK gene. One mutant strain had a direct T-DNA insertion affecting the predicted protein's N-terminus, while the other possessed an unlinked frameshift mutation towards the C-terminus. We used genetic complementation to restore both strains' wild-type (WT) function (virulence, morphogenesis, and stress response). We demonstrated that ZtSSK2 has a non-redundant function with ZtSTE11 in virulence through the biochemical activation of the stress-activated HOG1 MAPK pathway. Moreover, we present data suggesting that SSK2 has a unique role in activating this pathway in response to specific stresses. Finally, dual RNAseq-based transcriptome profiling of WT and SSK2 mutant strains revealed many HOG1-dependent transcriptional changes in the fungus during early infection and suggested that the host response does not discriminate between WT and mutant strains during this early phase. Together these data define new genes implicated in the virulence of the pathogen and emphasise the importance of a whole genome sequencing step in mutagenomic discovery pipelines.

6.
BMC Biol ; 21(1): 24, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747219

RESUMO

BACKGROUND: Studying genomic variation in rapidly evolving pathogens potentially enables identification of genes supporting their "core biology", being present, functional and expressed by all strains or "flexible biology", varying between strains. Genes supporting flexible biology may be considered to be "accessory", whilst the "core" gene set is likely to be important for common features of a pathogen species biology, including virulence on all host genotypes. The wheat-pathogenic fungus Zymoseptoria tritici represents one of the most rapidly evolving threats to global food security and was the focus of this study. RESULTS: We constructed a pangenome of 18 European field isolates, with 12 also subjected to RNAseq transcription profiling during infection. Combining this data, we predicted a "core" gene set comprising 9807 sequences which were (1) present in all isolates, (2) lacking inactivating polymorphisms and (3) expressed by all isolates. A large accessory genome, consisting of 45% of the total genes, was also defined. We classified genetic and genomic polymorphism at both chromosomal and individual gene scales. Proteins required for essential functions including virulence had lower-than average sequence variability amongst core genes. Both core and accessory genomes encoded many small, secreted candidate effector proteins that likely interact with plant immunity. Viral vector-mediated transient in planta overexpression of 88 candidates failed to identify any which induced leaf necrosis characteristic of disease. However, functional complementation of a non-pathogenic deletion mutant lacking five core genes demonstrated that full virulence was restored by re-introduction of the single gene exhibiting least sequence polymorphism and highest expression. CONCLUSIONS: These data support the combined use of pangenomics and transcriptomics for defining genes which represent core, and potentially exploitable, weaknesses in rapidly evolving pathogens.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Virulência/genética , Genoma Fúngico , Genes Fúngicos , Doenças das Plantas/microbiologia
7.
Trends Plant Sci ; 28(1): 10-13, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272890

RESUMO

Contrary to the classical cell-wall model, pectin metabolism may play a crucial role in cell-wall integrity, detection of plant pathogens, and defense response. Here we discuss the evidence and propose a new metabolic and regulatory model linking pectin to cell-wall-mediated immunity, including ripening-associated disease susceptibility in the tomato.


Assuntos
Pectinas , Plantas , Pectinas/metabolismo , Plantas/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo
8.
Sci Rep ; 12(1): 17880, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284131

RESUMO

Cell death processes in eukaryotes shape normal development and responses to the environment. For plant-microbe interactions, initiation of host cell death plays an important role in determining disease outcomes. Cell death pathways are frequently initiated following detection of pathogen-derived molecules which can lead to resistance or susceptibility to disease depending on pathogen lifestyle. We previously identified several small secreted proteins (SSPs) from the wheat-infecting fungus Zymoseptoria tritici that induce rapid cell death in Nicotiana benthamiana following Agrobacterium-mediated delivery and expression (agroinfiltration). Here we investigated whether the execution of host cells was mechanistically similar in response to different Z. tritici SSPs. Using RNA sequencing, we found that transient expression of four Z. tritici SSPs led to massive transcriptional reprogramming within 48 h of agroinfiltration. We observed that distinct host gene expression profiles were induced dependent on whether cell death occurs in a cell surface immune receptor-dependent or -independent manner. These gene expression profiles involved differential transcriptional networks mediated by WRKY, NAC and MYB transcription factors. In addition, differential expression of genes belonging to different classes of receptor-like proteins and receptor-like kinases was observed. These data suggest that different Z. tritici SSPs trigger differential transcriptional reprogramming in plant cells.


Assuntos
Ascomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Células Vegetais , Folhas de Planta/microbiologia , Ascomicetos/genética , Morte Celular , Fatores de Transcrição/metabolismo
9.
Essays Biochem ; 66(5): 595-605, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36062526

RESUMO

The apoplast comprises the intercellular space between cell membranes, includes the xylem, and extends to the rhizoplane and the outer surfaces of the plant. The apoplast plays roles in different biological processes including plant immunity. This highly specialised space is often the first place where pathogen recognition occurs, and this then triggers the immune response. The immune response in the apoplast involves different mechanisms that restrict pathogen infection. Among these responses, secretion of different molecules like proteases, proteins related to immunity, small RNAs and secondary metabolites play important and often additive or synergistic roles. In addition, production of reactive oxygen species occurs to cause direct deleterious effects on the pathogen as well as reinforce the plant's immune response by triggering modifications to cell wall composition and providing additional defence signalling capabilities. The pool of available sugar in the apoplast also plays a role in immunity. These sugars can be manipulated by both interactors, pathogens gaining access to nutrients whilst the plant's responses restrict the pathogen's access to nutrients. In this review, we describe the latest findings in the field to highlight the importance of the apoplast in plant-pathogen interactions and plant immunity. We also indicate where new discoveries are needed.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Peptídeo Hidrolases , Espécies Reativas de Oxigênio/metabolismo , Açúcares
10.
Methods Mol Biol ; 2523: 93-112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35759193

RESUMO

One of the important armories that pathogens utilize to successfully colonize the plants is small secreted effector proteins, which could perform a variety of functions from suppression of plant innate immunity to manipulation of plant physiology in favor of the disease. Plants, on the other hand, evolved disease resistance genes that recognize some of the effectors or avirulence (Avr) proteins. Both, identification of the Avr proteins and understanding of the mechanisms of action of other effectors, are important areas of research in the molecular plant-pathogen interactions field as this knowledge is critical for the development of new effective pathogen control measures. To enable functional analysis of the effectors, it is desirable to be able to overexpress them readily in the host plants. Here we describe detailed experimental protocols for transient effector overexpression in wheat and other monocots using binary Barley stripe mosaic virus (BSMV)- and Foxtail mosaic virus (FoMV)-derived vectors. This functional genomics tool, better known as VOX (Virus-mediated protein OvereXpression), is rapid and relatively simple and inexpensive.


Assuntos
Vetores Genéticos , Triticum , Resistência à Doença/genética , Triticum/microbiologia
11.
Nat Commun ; 13(1): 3644, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752733

RESUMO

FANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene. FANCM also suppresses class II crossovers that increased 2.6-fold in fancm msh5 quadruple mutants. These data are consistent with a role for FANCM in second-end capture of class I designated crossover sites, whilst FANCM is also required to promote formation of non-crossovers. In hexaploid wheat, genetic mapping reveals that crossovers increase by 31% in fancm compared to wild type, indicating that fancm could be an effective tool to accelerate breeding. Crossover rate differences in fancm correlate with wild type crossover distributions, suggesting that chromatin may influence the recombination landscape in similar ways in both wild type and fancm.


Assuntos
Troca Genética , Triticum , Meiose/genética , Melhoramento Vegetal , Triticum/genética
12.
Methods Mol Biol ; 2408: 95-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35325418

RESUMO

Advances made in genome sequencing projects and structural genomics are generating large repertoire of candidate genes in plants associated with specific agronomic traits. Rapid and high-throughput functional genomics approaches are therefore needed to validate the biological function of these genes especially for agronomically important crops beyond the few model plant species. This can be achieved by utilizing available gene knockout or transgenic methodologies, but these can take considerable time and effort particularly in crops with large and complex genomes such as wheat. Therefore, any tool that expedites the validation of gene function is of particular benefit especially in cereal crop plants that are genetically difficult to transform. One such reverse genetics tool is virus-induced gene silencing (VIGS) which relies on the plants' natural antiviral RNA silencing defence mechanism. VIGS is used to downregulate target gene expression in a transient manner which persists long enough to determine its effect on a specific trait. VIGS based on Barley stripe mosaic virus (BSMV) is rapid, powerful, efficient, and relatively inexpensive tool for the analysis of gene function in cereal species. Here we present detailed protocols for BSMV-mediated VIGS for robust gene silencing in bread wheat and related species.


Assuntos
Hordeum , Triticum , Inativação Gênica , Hordeum/genética , Triticum/genética
13.
Vaccines (Basel) ; 10(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35335110

RESUMO

Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the availability of commercial vaccines for the major viral diseases of poultry, these diseases continue to pose a significant risk to global food security. There are multiple factors for this: vaccine costs may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and commercial vaccines may protect poorly against local emerging strains. The development of transient gene expression systems in plants provides a versatile and robust tool to generate a high yield of recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-derived vaccines offer good stability and safety these include both subunit and virus-like particle (VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines, including significant reductions in virus shedding and the ability to differentiate between infected and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for prevention of the AI and ND in poultry, challenges in their development, and potential for expanding their use in low- and middle-income countries.

14.
J Exp Bot ; 73(1): 22-37, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34520537

RESUMO

With the requirement to breed more productive crop plants in order to feed a growing global population, compounded by increasingly widespread resistance to pesticides exhibited by pathogens, plant immunity is becoming an increasingly important area of research. Of the genes that contribute to disease resistance, the wall-associated receptor-like kinases (WAKs) are increasingly shown to play a major role, in addition to their contribution to plant growth and development or tolerance to abiotic stresses. Being transmembrane proteins, WAKs form a central pillar of a plant cell's ability to monitor and interact with the extracellular environment. Found in both dicots and monocots, WAKs have been implicated in defence against pathogens with diverse lifestyles and contribute to plant immunity in a variety of ways. Whilst some act as cell surface-localized immune receptors recognizing either pathogen- or plant-derived invasion molecules (e.g. effectors or damage-associated molecular patterns, respectively), others promote innate immunity through cell wall modification and strengthening, thus limiting pathogen intrusion. The ability of some WAKs to provide both durable resistance against pathogens and other agronomic benefits makes this gene family important targets in the development of future crop ideotypes and important to a greater understanding of the complexity and robustness of plant immunity.


Assuntos
Doenças das Plantas , Receptores de Reconhecimento de Padrão , Resistência à Doença , Imunidade Inata , Melhoramento Vegetal , Imunidade Vegetal
15.
16.
Front Plant Sci ; 13: 1070986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699841

RESUMO

Introduction: Septoria tritici blotch (STB) is one of the most damaging fungal diseases of wheat in Europe, largely due to the paucity of effective resistance genes against it in breeding materials. Currently dominant protection methods against this disease, e.g. fungicides and the disease resistance genes already deployed, are losing their effectiveness. Therefore, it is vital that other available disease resistance sources are identified, understood and deployed in a manner that maximises their effectiveness and durability. Methods: In this study, we assessed wheat genotypes containing nineteen known major STB resistance genes (Stb1 through to Stb19) or combinations thereof against a broad panel of 93 UK Zymoseptoria tritici isolates. Seedlings were inoculated using a cotton swab and monitored for four weeks. Four infection-related phenotypic traits were visually assessed. These were the days post infection to the development of first symptoms and pycnidia, percentage coverage of the infected leaf area with chlorosis/necrosis and percentage coverage of the infected leaf area with pycnidia. Results: The different Stb genes were found to vary greatly in the levels of protection they provided, with pycnidia coverage at four weeks differing significantly from susceptible controls for every tested genotype. Stb10, Stb11, Stb12, Stb16q, Stb17, and Stb19 were identified as contributing broad spectrum disease resistance, and synthetic hexaploid wheat lines were identified as particularly promising sources of broadly effective STB resistances. Discussion: No single Z. tritici isolate was found to be virulent against all tested resistance genes. Wheat genotypes carrying multiple Stb genes were found to provide higher levels of resistance than expected given their historical levels of use. Furthermore, it was noted that disease resistance controlled by different Stb genes was associated with different levels of chlorosis, with high levels of early chlorosis in some genotypes correlated with high resistance to fungal pycnidia development, potentially suggesting the presence of multiple resistance mechanisms.The knowledge obtained here will aid UK breeders in prioritising Stb genes for future breeding programmes, in which optimal combinations of resistance genes could be pyramided. In addition, this study identified the most interesting Stb genes for cloning and detailed functional analysis.

17.
Plants (Basel) ; 10(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34371684

RESUMO

CRISPR/Cas technology has recently become the molecular tool of choice for gene function studies in plants as well as crop improvement. Wheat is a globally important staple crop with a well annotated genome and there is plenty of scope for improving its agriculturally important traits using genome editing technologies, such as CRISPR/Cas. As part of this study we targeted three different genes in hexaploid wheat Triticum aestivum: TaBAK1-2 in the spring cultivar Cadenza as well as Ta-eIF4E and Ta-eIF(iso)4E in winter cultivars Cezanne, Goncourt and Prevert. Primary transgenic lines carrying CRISPR/Cas-induced indels were successfully generated for all targeted genes. While BAK1 is an important regulator of plant immunity and development, Ta-eIF4E and Ta-eIF(iso)4E act as susceptibility (S) factors required for plant viruses from the Potyviridae family to complete their life cycle. We anticipate the resultant homozygous tabak1-2 mutant lines will facilitate studies on the involvement of BAK1 in immune responses in wheat, while ta-eif4e and ta-eif(iso)4e mutant lines have the potential to become a source of resistance to wheat spindle streak mosaic virus (WSSMV) and wheat yellow mosaic virus (WYMV), both of which are important pathogens of wheat. As winter wheat varieties are generally less amenable to genetic transformation, the successful experimental methodology for transformation and genome editing in winter wheat presented in this study will be of interest to the research community working with this crop.

18.
Mol Plant Pathol ; 22(9): 1121-1133, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34258838

RESUMO

Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Z. tritici and wheat, the wheat receptor-like kinase Stb6 and the Z. tritici secreted effector protein AvrStb6, have been identified. Previous analyses revealed a high diversity of AvrStb6 haplotypes present in earlier Z. tritici isolate collections, with up to c.18% of analysed isolates possessing the avirulence isoform of AvrStb6 identical to that originally identified in the reference isolate IPO323. With Stb6 present in many commercial wheat cultivars globally, we aimed to assess potential changes in AvrStb6 genetic diversity and the incidence of haplotypes allowing evasion of Stb6-mediated resistance in more recent Z. tritici populations. Here we show, using targeted resequencing of AvrStb6, that this gene is universally present in field isolates sampled from major wheat-growing regions of the world in 2013-2017. However, in contrast to the data from previous AvrStb6 population studies, we report a complete absence of the originally described avirulence isoform of AvrStb6 amongst modern Z. tritici isolates. Moreover, a remarkably small number of haplotypes, each encoding AvrStb6 protein isoforms conditioning virulence on Stb6-containing wheat, were found to predominate among modern Z. tritici isolates. A single virulence isoform of AvrStb6 was found to be particularly abundant throughout the global population. These findings indicate that, despite the ability of Z. tritici to sexually reproduce on resistant hosts, AvrStb6 avirulence haplotypes tend to be eliminated in subsequent populations.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Variação Genética , Virulência/genética
19.
Nat Plants ; 7(9): 1220-1228, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34294906

RESUMO

Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of the global staple crop wheat. Although this disease was largely controlled in the latter half of the twentieth century, new virulent strains of Pgt, such as Ug99, have recently evolved1,2. These strains have caused notable losses worldwide and their continued spread threatens global wheat production. Breeding for disease resistance provides the most cost-effective control of wheat rust diseases3. A number of rust resistance genes have been characterized in wheat and most encode immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class4, which recognize pathogen effector proteins known as avirulence (Avr) proteins5. However, only two Avr genes have been identified in Pgt so far, AvrSr35 and AvrSr50 (refs. 6,7), and none in other cereal rusts8,9. The Sr27 resistance gene was first identified in a wheat line carrying an introgression of the 3R chromosome from Imperial rye10. Although not deployed widely in wheat, Sr27 is widespread in the artificial crop species Triticosecale (triticale), which is a wheat-rye hybrid and is a host for Pgt11,12. Sr27 is effective against Ug99 (ref. 13) and other recent Pgt strains14,15. Here, we identify both the Sr27 gene in wheat and the corresponding AvrSr27 gene in Pgt and show that virulence to Sr27 can arise experimentally and in the field through deletion mutations, copy number variation and expression level polymorphisms at the AvrSr27 locus.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Puccinia/genética , Puccinia/isolamento & purificação , Puccinia/patogenicidade , Triticum/genética , Virulência/genética , Austrália , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Fúngicos , Genes de Plantas , Variação Genética , Genômica , Genótipo , Triticum/microbiologia
20.
Plant Biotechnol J ; 19(12): 2469-2487, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34289221

RESUMO

A data set of promoter and 5'UTR sequences of homoeo-alleles of 459 wheat genes that contribute to agriculturally important traits in 95 ancestral and commercial wheat cultivars is presented here. The high-stringency myBaits technology used made individual capture of homoeo-allele promoters possible, which is reported here for the first time. Promoters of most genes are remarkably conserved across the 83 hexaploid cultivars used with <7 haplotypes per promoter and 21% being identical to the reference Chinese Spring. InDels and many high-confidence SNPs are located within predicted plant transcription factor binding sites, potentially changing gene expression. Most haplotypes found in the Watkins landraces and a few haplotypes found in Triticum monococcum, germplasms hitherto not thought to have been used in modern wheat breeding, are already found in many commercial hexaploid wheats. The full data set which is useful for genomic and gene function studies and wheat breeding is available at https://rrescloud.rothamsted.ac.uk/index.php/s/DMCFDu5iAGTl50u/authenticate.


Assuntos
Melhoramento Vegetal , Triticum , Regiões 5' não Traduzidas/genética , Alelos , Haplótipos/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...