Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 116: 154860, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201366

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is upregulated in prostate cancer (PCa). However, suppression of EGFR did not improve the patient outcome, possibly due to the activation of PI3K/Akt signaling in PCa. Compounds able to suppress both PI3K/Akt and EGFR signaling may be effective for treating advanced PCa. PURPOSE: We examined if caffeic acid phenethyl ester (CAPE) simultaneously suppresses the EGFR and Akt signaling, migration and tumor growth in PCa cells. METHODS: Wound healing assay, transwell migration assay and xenograft mice model were used to determine the effects of CAPE on migration and proliferation of PCa cells. Western blot, immunoprecipitation, and immunohistochemistry staining were performed to determine the effects of CAPE on EGFR and Akt signaling. RESULTS: CAPE treatment decreased the gene expression of HRAS, RAF1, AKT2, GSK3A, and EGF and the protein expression of phospho-EGFR (Y845, Y1069, Y1148, Y1173), phospho-FAK, Akt, and ERK1/2 in PCa cells. CAPE treatment inhibited the EGF-induced migration of PCa cells. Combined treatment of CAPE with EGFR inhibitor gefitinib showed additive inhibition on migration and proliferation of PCa cells. Injection of CAPE (15 mg/kg/3 days) for 14 days suppressed the tumor growth of prostate xenografts in nude mice as well as suppressed the levels of Ki67, phospho-EGFR Y845, MMP-9, phospho-Akt S473, phospho-Akt T308, Ras, and Raf-1 in prostate xenografts. CONCLUSIONS: Our study suggested that CAPE can simultaneously suppress the EGFR and Akt signaling in PCa cells and is a potential therapeutic agent for advanced PCa.


Assuntos
Álcool Feniletílico , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Próstata/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Fator de Crescimento Epidérmico , Neoplasias da Próstata/patologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Receptores ErbB , Álcool Feniletílico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
2.
PLoS One ; 17(7): e0270803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776912

RESUMO

Enzalutamide, a nonsteroidal antiandrogen, significantly prolonged the survival of patients with metastatic castration-resistant prostate cancer (CRPC). However, patients receiving enzalutamide frequently develop drug resistance. Rooibos (Aspalathus linearis) is a shrub-like leguminous fynbos plant endemic to the Cedarberg Mountains area in South Africa. We evaluated the possibility of using a pharmaceutical-grade green rooibos extract (GRT, containing 12.78% aspalathin) to suppress the proliferation and survival of enzalutamide-resistant prostate cancer (PCa) cells. Treatment with GRT dose-dependently suppressed the proliferation, survival, and colony formation of enzalutamide-resistant C4-2 MDV3100r cells and PC-3 cells. Non-cancerous human cells were more resistant to GRT treatment. GRT suppressed the expression of proteins involved in phosphoinositide 3-kinase (PI3K)-Akt signaling, androgen receptor (AR), phospho-AR (Ser81), cyclin-dependent kinase 1 (Cdk1), c-Myc and Bcl-2 but increased the expression of apoptotic proteins. Overexpression of c-Myc antagonized the suppressive effects of GRT, while knockdown of c-Myc increased the sensitivity of PCa cells to GRT treatment. Expression level of c-Myc correlated to resistance of PCa cells to GRT treatment. Additionally, immunofluorescence microscopy demonstrated that GRT reduced the abundance of AR proteins both in nucleus and cytoplasm. Treatment with cycloheximide revealed that GRT reduced the stability of AR. GRT suppressed protein expression of AR and AR's downstream target prostate specific antigen (PSA) in C4-2 MDV3100r cells. Interestingly, we observed that AR proteins accumulate in nucleus and PSA expression is activated in the AR-positive enzalutamide-resistant PCa cells even in the absence of androgen. Our results suggested that GRT treatment suppressed the cell proliferation and survival of enzalutamide-resistant PCa cells via inhibition of c-Myc, induction of apoptosis, as well as the suppression of expression, signaling and stability of AR. GRT is a potential adjuvant therapeutic agent for enzalutamide-resistant PCa.


Assuntos
Aspalathus , Neoplasias de Próstata Resistentes à Castração , Aspalathus/metabolismo , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Masculino , Nitrilas , Feniltioidantoína , Fosfatidilinositol 3-Quinases , Antígeno Prostático Específico/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...