Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627584

RESUMO

The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER+ breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer, and offer new insights into the unique roles of PML isoforms in breast cancer.

2.
Res Sq ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720048

RESUMO

The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER + breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer and offer new insights into the unique roles of PML isoforms in breast cancer.

3.
Cancers (Basel) ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471132

RESUMO

The TGF-ß type III receptor (TGFBR3) is an essential constituent of the TGF-ß signaling. In this study, we observed a down-regulation of TGFBR3 in oral cancer, a subtype of head and neck cancer (HNC), and patients with low TGFBR3 had poor clinical outcomes. Ectopic expression of TGFBR3 decreased migration and invasion of oral cancer cells and lymph node metastasis of tumors, whereas depletion of TGFBR3 had the opposite effect. In SMAD4-positive OC-2 oral cancer cells, TGFBR3-mediated suppression requires both of its cytoplasmic interacting partners ARRB2 and GIPC1. We demonstrated that TGFBR3 induces the abundance of secreted angiogenin (ANG), a known pro-angiogenic factor, and ANG is essential and sufficient to mediate TGFBR3-dependent inhibition of migration and invasion of oral cancer cells. Notably, in SMAD4-deficient CAL-27 oral cancer cells, only GIPC1 is essential for TGFBR3-induced suppressive activity. Accordingly, HNC patients with low expressions of both TGFBR3 and GIPC1 had the poorest overall survival. In summary, we conclude that TGFBR3 is as a tumor suppressor via SMAD4-dependent and -independent manner in both tumor and stromal cells during oral carcinogenesis. Our study should facilitate the possibility of using TGFBR3-mediated tumor suppression for HNC treatment.

4.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118707, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243901

RESUMO

The gene encoding promyelocytic leukemia protein (PML) generates several spliced isoforms. Ectopic expression of PML1 promotes the proliferation of ERα-positive MCF-7 breast cancer (BC) cells, while a loss of PML by knockdown or overexpression of PML4 does the opposite. PML is an essential constituent of highly dynamic particles called PML nuclear bodies (NBs). PML NBs are heterogenous multiprotein subnuclear structures that are part of cellular stress sensing machinery. The antioxidant sulforaphane (SFN) inhibits the proliferation of BC cells and causes a redistribution of the subcellular localization of PML, a disruption of disulfide-bond linkages in nuclear PML-containing complexes, and a reduction in the number and size of PML NBs. Mechanistically, SFN modifies several cysteine residues, including C204, located in the RBCC domain of PML. PML is sumoylated and contains a Sumo-interacting motif, and a significant fraction of Sumo1 and Sumo2/3 co-localizes with PML NBs. Ectopic expression of the mutant C204A selectively inhibits the biogenesis of endogenous PML NBs but not PML-less Sumo1-, Sumo2/3, or Daxx-containing nuclear speckles. Importantly, PML1 (C204A) functions as a dominant-negative mutant over endogenous PML protein and promotes anti-proliferation activity. Together, we conclude that SFN elicits its cytotoxic activity in part by inactivating PML1's pro-tumorigenic activity.


Assuntos
Antioxidantes/metabolismo , Isotiocianatos/farmacologia , Proteínas Oncogênicas/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Isoformas de Proteínas/metabolismo , Ciclo Celular , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas Correpressoras , Humanos , Células MCF-7 , Chaperonas Moleculares , Proteínas Oncogênicas/genética , Isoformas de Proteínas/genética , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sulfóxidos , Sumoilação , Ubiquitinas/metabolismo
5.
Cancer Sci ; 110(9): 2783-2793, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31325403

RESUMO

Oral cancer, a subtype of head and neck cancer, is characterized by increased infiltrating regulatory T cells (Treg); however, the pathological significance of the increase in Tregs in disease prognosis and progression and their underlying mechanism remain unestablished. C-C motif chemokine ligand 22 (CCL22) has been implicated in the recruitment of Tregs. We used RT-qPCR to determine CCL22 mRNA expression in clinical specimens and cultured cells. Loss-of-function and gain-of-function studies were carried out to analyze the effects of CCL22 modulations on cell proliferation, migration, invasion, and tumorigenesis and the mechanism involved in the deregulation of CCL22. In oral cancer specimens, CCL22 mRNA was upregulated. The increase was not only associated with reduced disease-free survival but also strongly correlated with an increase in FOXP3 mRNA, a master regulator of Treg development and functions. Silencing CCL22 expression reduced cell proliferation, migration, and invasion, whereas ectopic overexpression showed opposite effects. Manipulation of CCL22 expression in cancer cells altered tumorigenesis in both immune-compromised and -competent mice, supporting both autonomous and non-autonomous actions of CCL22. Release of interleukin 1ß (IL-1ß) from cancer-associated fibroblasts (CAF) induces CCL22 mRNA expression in oral cancer cells by activating transcription factor nuclear factor kappa B (NF-κB). Our data support a model in which CAF-derived IL-1ß, CCL22, and its receptor CCR4 foster a protumor environment by promoting cell transformation and Treg infiltration. Intervention of the IL-1ß-CCL22-CCR4 signaling axis may offer a novel therapeutic strategy for oral cancer treatment.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Quimiocina CCL22/metabolismo , Interleucina-1beta/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Fibroblastos Associados a Câncer/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Quimiocina CCL22/genética , Intervalo Livre de Doença , Feminino , Seguimentos , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Interleucina-1beta/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Mucosa Bucal/cirurgia , Neoplasias Bucais/imunologia , Neoplasias Bucais/mortalidade , Neoplasias Bucais/cirurgia , Invasividade Neoplásica/imunologia , Invasividade Neoplásica/patologia , Prognóstico , RNA Interferente Pequeno/metabolismo , Receptores CCR4/metabolismo , Transdução de Sinais/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Análise de Sobrevida , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Artigo em Inglês | MEDLINE | ID: mdl-30417008

RESUMO

Glucocorticoid receptor (GC), a founding member of the nuclear hormone receptor superfamily, is a glucocorticoid-activated transcription factor that regulates gene expression and controls the development and homeostasis of human podocytes. Synthetic glucocorticoids are the standard treatment regimens for proteinuria (protein in the urine) and nephrotic syndrome (NS) caused by kidney diseases. These include minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN) and immunoglobulin A nephropathy (IgAN) or subsequent complications due to diabetes mellitus or HIV infection. However, unwanted side effects and steroid-resistance remain major issues for their long-term use. Furthermore, the mechanism by which glucocorticoids elicit their renoprotective activity in podocyte and glomeruli is poorly understood. Podocytes are highly differentiated epithelial cells that contribute to the integrity of kidney glomerular filtration barrier. Injury or loss of podocytes leads to proteinuria and nephrotic syndrome. Recent studies in multiple experimental models have begun to explore the mechanism of GC action in podocytes. This review will discuss progress in our understanding of the role of glucocorticoid receptor and glucocorticoids in podocyte physiology and their renoprotective activity in nephrotic syndrome.

7.
Nat Commun ; 9(1): 3520, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166540

RESUMO

Human estrogen receptor alpha (hERα) is a hormone-responsive nuclear receptor (NR) involved in cell growth and survival that contains both a DNA-binding domain (DBD) and a ligand-binding domain (LBD). Functionally relevant inter-domain interactions between the DBD and LBD have been observed in several other NRs, but for hERα, the detailed structural architecture of the complex is unknown. By utilizing integrated complementary techniques of small-angle X-ray scattering, hydroxyl radical protein footprinting and computational modeling, here we report an asymmetric L-shaped "boot" structure of the multidomain hERα and identify the specific sites on each domain at the domain interface involved in DBD-LBD interactions. We demonstrate the functional role of the proposed DBD-LBD domain interface through site-specific mutagenesis altering the hERα interfacial structure and allosteric signaling. The L-shaped structure of hERα is a distinctive DBD-LBD organization of NR complexes and more importantly, reveals a signaling mechanism mediated by inter-domain crosstalk that regulates this receptor's allosteric function.


Assuntos
Modelos Moleculares , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Sítios de Ligação , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína
8.
Oncogene ; 37(29): 4033-4045, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29706658

RESUMO

The actin crosslinking protein α-actinin-4 (ACTN4) is emerging as an important contributor to the pathogenesis of cancer. This has largely been attributed to its role in regulating cytoskeleton organization and its involvement in transcriptional regulation of gene expression. Here we report a novel function of ACTN4 as a scaffold necessary for stabilization of receptor-interacting protein kinase 1 (RIPK1) that we have recently found to be an oncogenic driver in melanoma. ACTN4 bound to RIPK1 and cellular inhibitor of apoptosis protein 1 (cIAP1) with its actin-binding domain at the N-terminus and the CaM-like domain at the C-terminus, respectively. This facilitated the physical association between RIPK1 and cIAP1 and was critical for stabilization of RIPK1 that in turn activated NF-κB. Functional investigations showed that silencing of ACTN4 suppressed melanoma cell proliferation and retarded melanoma xenograft growth. In contrast, overexpression of ACTN4 promoted melanocyte and melanoma cell proliferation and moreover, prompted melanocyte anchorage-independent growth. Of note, the expression of ACTN4 was transcriptionally activated by NF-κB. Taken together, our findings identify ACTN4 as an oncogenic regulator through driving a feedforward signaling axis of ACTN4-RIPK1-NF-κB, with potential implications for targeting ACTN4 in the treatment of melanoma.


Assuntos
Actinina/metabolismo , Melanoma/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Masculino , Melanócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Oncogenes/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia
9.
Sci Rep ; 8(1): 5458, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615682

RESUMO

The S100A2 protein is an important regulator of keratinocyte differentiation, but its role in wound healing remains unknown. We establish epithelial-specific S100A2 transgenic (TG) mice and study its role in wound repair using punch biopsy wounding assays. In line with the observed increase in proliferation and migration of S100A2-depleted human keratinocytes, mice expressing human S100A2 exhibit delayed cutaneous wound repair. This was accompanied by the reduction of re-epithelialization as well as a slow, attenuated response of Mcp1, Il6, Il1ß, Cox2, and Tnf mRNA expression in the early phase. We also observed delayed Vegfa mRNA induction, a delayed enhancement of the Tgfß1-mediated alpha smooth muscle actin (α-Sma) axis and a differential expression of collagen type 1 and 3. The stress-activated p53 tumor suppressor protein plays an important role in cutaneous wound healing and is an S100A2 inducer. Notably, S100A2 complexes with p53, potentiates p53-mediated transcription and increases p53 expression both transcriptionally and posttranscriptionally. Consistent with a role of p53 in repressing NF-κB-mediated transcriptional activation, S100A2 enhanced p53-mediated promoter suppression of Cox2, an early inducible NF-κB target gene upon wound injury. Our study thus supports a model in which the p53-S100A2 positive feedback loop regulates wound repair process.


Assuntos
Fatores Quimiotáticos/metabolismo , Retroalimentação Fisiológica , Reepitelização , Proteínas S100/metabolismo , Pele/citologia , Proteína Supressora de Tumor p53/metabolismo , Cicatrização , Actinas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Fatores Quimiotáticos/genética , Colágeno/metabolismo , Ciclo-Oxigenase 2/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Queratinócitos/citologia , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas S100/genética , Pele/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/metabolismo
10.
Cell Biosci ; 8: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29528047

RESUMO

[This corrects the article DOI: 10.1186/s13578-018-0204-8.].

11.
Cell Biosci ; 8: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416846

RESUMO

Promyelocytic leukemia protein (PML) was originally identified as a fusion partner of retinoic acid receptor alpha in acute promyelocytic leukemia patients with the (15;17) chromosomal translocation, giving rise to PML-RARα and RARα-PML fusion proteins. A body of evidence indicated that PML possesses tumor suppressing activity by regulating apoptosis, cell cycle, senescence and DNA damage responses. PML is enriched in discrete nuclear substructures in mammalian cells with 0.2-1 µm diameter in size, referred to as alternately Kremer bodies, nuclear domain 10, PML oncogenic domains or PML nuclear bodies (NBs). Dysregulation of PML NB formation results in altered transcriptional regulation, protein modification, apoptosis and cellular senescence. In addition to PML NBs, PML is also present in nucleoplasm and cytoplasmic compartments, including the endoplasmic reticulum and mitochondria-associated membranes. The role of PML in tumor suppression has been extensively studied but increasing evidence indicates that PML also plays versatile roles in stem cell renewal, metabolism, inflammatory responses, neural function, mammary development and angiogenesis. In this review, we will briefly describe the known PML regulation and function and include new findings.

12.
J Biol Chem ; 292(24): 10048-10060, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28432122

RESUMO

IFNs are effective in inhibiting angiogenesis in preclinical models and in treating several angioproliferative disorders. However, the detailed mechanisms of IFNα-mediated anti-angiogenesis are not completely understood. Stat1/2/3 and PML are IFNα downstream effectors and are pivotal regulators of angiogenesis. Here, we investigated PML's role in the regulation of Stat1/2/3 activity. In Pml knock-out (KO) mice, ablation of Pml largely reduces IFNα angiostatic ability in Matrigel plug assays. This suggested an essential role for PML in IFNα's anti-angiogenic function. We also demonstrated that PML shared a large cohort of regulatory genes with Stat1 and Stat3, indicating an important role of PML in regulating Stat1 and Stat3 activity. Using molecular tools and primary endothelial cells, we demonstrated that PML positively regulates Stat1 and Stat2 isgylation, a ubiquitination-like protein modification. Accordingly, manipulation of the isgylation system by knocking down USP18 altered IFNα-PML axis-mediated inhibition of endothelial cell migration and network formation. Furthermore, PML promotes turnover of nuclear Stat3, and knockdown of PML mitigates the effect of LLL12, a selective Stat3 inhibitor, on IFNα-mediated anti-angiogenic activity. Taken together, we elucidated an unappreciated mechanism in which PML, an IFNα-inducible effector, possess potent angiostatic activity, doing so in part by forming a positive feedforward loop with Stat1/2 and a negative feedback loop with Stat3. The interplay between PML, Stat1/Stat2, and Stat3 contributes to IFNα-mediated inhibition of angiogenesis, and disruption of this network results in aberrant IFNα signaling and altered angiostatic activity.


Assuntos
Endotélio Vascular/metabolismo , Interferon-alfa/metabolismo , Neovascularização Patológica/prevenção & controle , Proteína da Leucemia Promielocítica/metabolismo , Fator de Transcrição STAT1/agonistas , Fator de Transcrição STAT2/agonistas , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Linhagem Celular , Células Cultivadas , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interferon-alfa/genética , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Fisiológica , Proteína da Leucemia Promielocítica/antagonistas & inibidores , Proteína da Leucemia Promielocítica/genética , Processamento de Proteína Pós-Traducional , Interferência de RNA , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
13.
J Biol Chem ; 292(5): 1637-1647, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27998979

RESUMO

Glucocorticoids are a general class of steroids that possess renoprotective activity in glomeruli through their interaction with the glucocorticoid receptor. However, the mechanisms by which glucocorticoids ameliorate proteinuria and glomerular disease are not well understood. In this study, we demonstrated that α actinin 4 (ACTN4), an actin-cross-linking protein known to coordinate cytoskeletal organization, interacts with the glucocorticoid receptor (GR) in the nucleus of human podocytes (HPCs), a key cell type in the glomerulus critical for kidney filtration function. The GR-ACTN4 complex enhances glucocorticoid response element (GRE)-driven reporter activity. Stable knockdown of ACTN4 by shRNA in HPCs significantly reduces dexamethasone-mediated induction of GR target genes and GRE-driven reporter activity without disrupting dexamethasone-induced nuclear translocation of GR. Synonymous mutations or protein expression losses in ACTN4 are associated with kidney diseases, including focal segmental glomerulosclerosis, characterized by proteinuria and podocyte injury. We found that focal segmental glomerulosclerosis-linked ACTN4 mutants lose their ability to bind liganded GR and support GRE-mediated transcriptional activity. Mechanistically, GR and ACTN4 interact in the nucleus of HPCs. Furthermore, disruption of the LXXLL nuclear receptor-interacting motif present in ACTN4 results in reduced GR interaction and dexamethasone-mediated transactivation of a GRE reporter while still maintaining its actin-binding activity. In contrast, an ACTN4 isoform, ACTN4 (Iso), that loses its actin-binding domain is still capable of potentiating a GRE reporter. Dexamethasone induces the recruitment of ACTN4 and GR to putative GREs in dexamethasone-transactivated promoters, SERPINE1, ANGPLT4, CCL20, and SAA1 as well as the NF-κB (p65) binding sites on GR-transrepressed promoters such as IL-1ß, IL-6, and IL-8 Taken together, our data establish ACTN4 as a transcriptional co-regulator that modulates both dexamethasone-transactivated and -transrepressed genes in podocytes.


Assuntos
Actinina/biossíntese , Dexametasona/farmacologia , Podócitos/metabolismo , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta/fisiologia , Ativação Transcricional/efeitos dos fármacos , Actinina/genética , Citocinas/biossíntese , Citocinas/genética , Células HEK293 , Células HeLa , Humanos , Podócitos/citologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética
14.
J Biol Chem ; 291(11): 5512-5526, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26786102

RESUMO

The transcription factor c-Fos controls many important cellular processes, including cell growth and apoptosis. c-Fos expression is rapidly elevated in the prostate upon castration-mediated androgen withdrawal through an undefined mechanism. Here we show that androgens (5α-dihydrotestosterone and R1881) suppress c-Fos protein and mRNA expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) or EGF in human prostate cancer (PCa) cell lines. Such suppression transpires through a transcriptional mechanism, predominantly at the proximal serum response element of the c-fos promoter. We show that androgen signaling suppresses TPA-induced c-Fos expression through repressing a PKC/MEK/ERK/ELK-1 signaling pathway. Moreover, our results support the hypothesis that p38(MAPK), PI3K, and PKCδ are involved in the androgenic regulation of c-Fos through controlling MEK/ERK. Stable silencing of c-Fos and PKCδ with shRNAs suggests that R1881 promotes cell death induced by low-dose TPA through a mechanism that is dependent on both PKCδ and loss of c-Fos expression. Reciprocally, loss of either PKCδ or c-Fos activates p38(MAPK) while suppressing the activation of ERK1/2. We also provide the first demonstration that R1881 permits cell death induced by low-dose TPA in the LNCaP androgen-dependent PCa cell line and that TPA-induced cell death is independent of exogenous androgen in the castration-resistant variants of LNCaP, C4-2 and C4-2B. Acquisition of androgen-independent killing by TPA correlates with activation of p38(MAPK), suppression of ERK1/2, and loss of c-Fos. These results provide new insights into androgenic control of c-Fos and use of PKC inhibitors in PCa therapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Androgênios/farmacologia , Di-Hidrotestosterona/farmacologia , Metribolona/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/genética , Acetato de Tetradecanoilforbol/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína Quinase C/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Cell Biosci ; 5: 60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539288

RESUMO

The tumor suppressor protein, promyelocytic leukemia protein (PML), was originally identified in acute promyelocytic leukemia due to a chromosomal translocation between chromosomes 15 and 17. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs), which are disrupted in acute promyelocytic leukemia cells. PML plays important roles in cell cycle regulation, survival and apoptosis, and inactivation or down-regulation of PML is frequently found in cancer cells. More than 120 proteins have been experimentally identified to physically associate with PML, and most of them either transiently or constitutively co-localize with PML-NBs. These interactions are associated with many cellular processes, including cell cycle arrest, apoptosis, senescence, transcriptional regulation, DNA repair and intermediary metabolism. Importantly, PML inactivation in cancer cells can occur at the transcriptional-, translational- or post-translational- levels. However, only a few somatic mutations have been found in cancer cells. A better understanding of its regulation and its role in tumor suppression will provide potential therapeutic opportunities. In this review, we discuss the role of PML in multiple tumor suppression pathways and summarize the players and stimuli that control PML protein expression or subcellular distribution.

16.
PLoS One ; 10(9): e0138152, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26422470

RESUMO

Hereditary 1, 25-dihydroxyvitamin D-resistant rickets (HVDRR), a rare recessive disease, is caused by mutation in the VDR gene encoding the vitamin D receptor leading to the resistance to vitamin D. We described a female toddler with initial presentation of leg tenderness and clinical features of HVDRR including severe rickets, hypocalcemia and hypophosphatemia without alopecia. Genetic analysis revealed novel compound heterozygous mutations of p.M4I and p.H229Q in patient's VDR gene. In cis p.M4I with FOKI-F eliminated both translation start sites of the VDR protein. The p.H229Q VDR exhibited significantly reduced VDR transactivation activity with intact dimerization with RXR. Our report expanded the mutation spectrum of HVDRR, and provided the first case of a benign variant p.M4I plus a common p.M1T polymorphism leading to a pathogenic allele.


Assuntos
Alelos , Resistência a Medicamentos/genética , Heterozigoto , Mutação , Receptores de Calcitriol/genética , Raquitismo/genética , Animais , Povo Asiático , Células COS , China , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Vitamina D/farmacologia
18.
J Biol Chem ; 290(1): 338-49, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25411248

RESUMO

Glomerular podocytes are highly specialized terminally differentiated cells that act as a filtration barrier in the kidney. Mutations in the actin-binding protein, α-actinin 4 (ACTN4), are linked to focal segmental glomerulosclerosis (FSGS), a chronic kidney disease characterized by proteinuria. Aberrant activation of NF-κB pathway in podocytes is implicated in glomerular diseases including proteinuria. We demonstrate here that stable knockdown of ACTN4 in podocytes significantly reduces TNFα-mediated induction of NF-κB target genes, including IL-1ß and NPHS1, and activation of an NF-κB-driven reporter without interfering with p65 nuclear translocation. Overexpression of ACTN4 and an actin binding-defective variant increases the reporter activity. In contrast, an FSGS-linked ACTN4 mutant, K255E, which has increased actin binding activity and is predominantly cytoplasmic, fails to potentiate NF-κB activity. Mechanistically, IκBα blocks the association of ACTN4 and p65 in the cytosol. In response to TNFα, both NF-κB subunits p65 and p50 translocate to the nucleus, where they bind and recruit ACTN4 to their targeted promoters, IL-1ß and IL-8. Taken together, our data identify ACTN4 as a novel coactivator for NF-κB transcription factors in podocytes. Importantly, this nuclear function of ACTN4 is independent of its actin binding activity in the cytoplasm.


Assuntos
Actinina/genética , NF-kappa B/genética , Podócitos/metabolismo , Transcrição Gênica , Actinina/antagonistas & inibidores , Actinina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular Transformada , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Podócitos/citologia , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
19.
Mol Biol Cell ; 25(16): 2485-98, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943846

RESUMO

Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Isotiocianatos/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , RNA Interferente Pequeno/genética , Transdução de Sinais , Sulfóxidos , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
20.
J Biol Chem ; 288(41): 29746-59, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23986437

RESUMO

The promyelocytic leukemia protein is a well known tumor suppressor, but its role in metabolism is largely unknown. Mice with a deletion in the gene for PML (KO mice) exhibit altered gene expression in liver, adipose tissue, and skeletal muscle, an accelerated rate of fatty acid metabolism, abnormal glucose metabolism, constitutive AMP-activating kinase (AMPK) activation, and insulin resistance in skeletal muscle. Last, an increased rate of energy expenditure protects PML KO mice from the effects of obesity induced by a Western diet. Collectively, our study uncovers a previously unappreciated role of PML in the regulation of metabolism and energy balance in mice.


Assuntos
Metabolismo Energético/genética , Proteínas Nucleares/genética , Obesidade/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas/genética , Tecido Adiposo/metabolismo , Animais , Western Blotting , Temperatura Corporal/genética , Antígenos CD36/genética , Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Expressão Gênica , Transportador de Glucose Tipo 4/genética , Fígado/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Músculo Esquelético/metabolismo , Proteínas Nucleares/deficiência , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Proteína da Leucemia Promielocítica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/deficiência , Proteínas Supressoras de Tumor/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...