Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6527, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499709

RESUMO

Brain mapping is vital in understanding the brain's functional organization. Electroencephalography (EEG) is one of the most widely used brain mapping approaches, primarily because it is non-invasive, inexpensive, straightforward, and effective. Increasing the electrode density in EEG systems provides more neural information and can thereby enable more detailed and nuanced mapping procedures. Here, we show that the central sulcus can be clearly delineated using a novel ultra-high-density EEG system (uHD EEG) and somatosensory evoked potentials (SSEPs). This uHD EEG records from 256 channels with an inter-electrode distance of 8.6 mm and an electrode diameter of 5.9 mm. Reconstructed head models were generated from T1-weighted MRI scans, and electrode positions were co-registered to these models to create topographical plots of brain activity. EEG data were first analyzed with peak detection methods and then classified using unsupervised spectral clustering. Our topography plots of the spatial distribution from the SSEPs clearly delineate a division between channels above the somatosensory and motor cortex, thereby localizing the central sulcus. Individual EEG channels could be correctly classified as anterior or posterior to the central sulcus with 95.2% accuracy, which is comparable to accuracies from invasive intracranial recordings. Our findings demonstrate that uHD EEG can resolve the electrophysiological signatures of functional representation in the brain at a level previously only seen from surgically implanted electrodes. This novel approach could benefit numerous applications, including research, neurosurgical mapping, clinical monitoring, detection of conscious function, brain-computer interfacing (BCI), rehabilitation, and mental health.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cabeça , Eletroencefalografia/métodos , Eletrodos Implantados , Eletrodos
2.
Front Neurosci ; 17: 1206120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609450

RESUMO

Introduction: Electrocorticographic (ECoG) high-gamma activity (HGA) is a widely recognized and robust neural correlate of cognition and behavior. However, fundamental signal properties of HGA, such as the high-gamma frequency band or temporal dynamics of HGA, have never been systematically characterized. As a result, HGA estimators are often poorly adjusted, such that they miss valuable physiological information. Methods: To address these issues, we conducted a thorough qualitative and quantitative characterization of HGA in ECoG signals. Our study is based on ECoG signals recorded from 18 epilepsy patients while performing motor control, listening, and visual perception tasks. In this study, we first categorize HGA into HGA types based on the cognitive/behavioral task. For each HGA type, we then systematically quantify three fundamental signal properties of HGA: the high-gamma frequency band, the HGA bandwidth, and the temporal dynamics of HGA. Results: The high-gamma frequency band strongly varies across subjects and across cognitive/behavioral tasks. In addition, HGA time courses have lowpass character, with transients limited to 10 Hz. The task-related rise time and duration of these HGA time courses depend on the individual subject and cognitive/behavioral task. Task-related HGA amplitudes are comparable across the investigated tasks. Discussion: This study is of high practical relevance because it provides a systematic basis for optimizing experiment design, ECoG acquisition and processing, and HGA estimation. Our results reveal previously unknown characteristics of HGA, the physiological principles of which need to be investigated in further studies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36908334

RESUMO

The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.

4.
Front Hum Neurosci ; 15: 616591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828468

RESUMO

Face recognition is impaired in patients with prosopagnosia, which may occur as a side effect of neurosurgical procedures. Face selective regions on the ventral temporal cortex have been localized with electrical cortical stimulation (ECS), electrocorticography (ECoG), and functional magnetic resonance imagining (fMRI). This is the first group study using within-patient comparisons to validate face selective regions mapping, utilizing the aforementioned modalities. Five patients underwent surgical treatment of intractable epilepsy and joined the study. Subdural grid electrodes were implanted on their ventral temporal cortices to localize seizure foci and face selective regions as part of the functional mapping protocol. Face selective regions were identified in all patients with fMRI, four patients with ECoG, and two patients with ECS. From 177 tested electrode locations in the region of interest (ROI), which is defined by the fusiform gyrus and the inferior temporal gyrus, 54 face locations were identified by at least one modality in all patients. fMRI mapping showed the highest detection rate, revealing 70.4% for face selective locations, whereas ECoG and ECS identified 64.8 and 31.5%, respectively. Thus, 28 face locations were co-localized by at least two modalities, with detection rates of 89.3% for fMRI, 85.7% for ECoG and 53.6 % for ECS. All five patients had no face recognition deficits after surgery, even though five of the face selective locations, one obtained by ECoG and the other four by fMRI, were within 10 mm to the resected volumes. Moreover, fMRI included a quite large volume artifact on the ventral temporal cortex in the ROI from the anatomical structures of the temporal base. In conclusion, ECS was not sensitive in several patients, whereas ECoG and fMRI even showed activation within 10 mm to the resected volumes. Considering the potential signal drop-out in fMRI makes ECoG the most reliable tool to identify face selective locations in this study. A multimodal approach can improve the specificity of ECoG and fMRI, while simultaneously minimizing the number of required ECS sessions. Hence, all modalities should be considered in a clinical mapping protocol entailing combined results of co-localized face selective locations.

5.
Front Neurol ; 11: 73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117032

RESUMO

Normal and pathological networks related to seizure propagation have got attention to elucide complex seizure semiology and contribute to diagnosis and surgical monitoring in epilepsy treatment. Since focal and generalized epileptogenic syndromes abnormalities might involve multiple foci and large-scale networks, we applied electrophysiolpgy (cortco-cortico evoked potential; CCEP), and tractography to make detailed diagnosis for complex syndrome. All 14 epilepsy patients with no or little abnormality on images investigations underwent subdural grid implantation for epilepsy diagnosis. To perform quick network analysis, we recorded and analyzed high gamma activity (HGA) of epileptogenic activity and CCEPs to identify pathological activity distribution and network connectivity. [Results] Pathological CCEPs showed two negative deflections consisting of early (>40 ms) and late (>150 ms) components in electrically stable circumstance at bed side and early CCEPs appeared in 57% of the patients. On the basis of the CCEP findings, tractography detected anatomical connections. Early components of pathological CCEPs diminished after complete disconnection of tractoography-based fibers between the foci in seven of eight cases. One case with residual pathological CCEPs showed poorer outcome. Thirteen (92.8%) patients with or without CCEPs who underwent network surgery had favorable prognosis except for a case with wide traumatic epilepsy. Intraoperative CCEP measurements and HGA mapping enabled visualization of pathological networks and clinical impotence as a biomarker to improve functional prognosis. HGA/CCEP recording should shed light on pathological and complex propagation for epilepsy surgery.

6.
Front Neurosci ; 13: 901, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616237

RESUMO

Invasive brain-computer interfaces yield remarkable performance in a multitude of applications. For classification experiments, high-gamma bandpower features and linear discriminant analysis (LDA) are commonly used due to simplicity and robustness. However, LDA is inherently static and not suited to account for transient information that is typically present in high-gamma features. To resolve this issue, we here present an extension of LDA to the time-variant feature space. We call this method time-variant linear discriminant analysis (TVLDA). It intrinsically provides a feature reduction stage, which makes external approaches thereto obsolete, such as feature selection techniques or common spatial patterns (CSPs). As well, we propose a time-domain whitening stage which equalizes the pronounced 1/f-shape of the typical brain-wave spectrum. We evaluated our proposed architecture based on recordings from 15 epilepsy patients with temporarily implanted subdural grids, who participated in additional research experiments besides clinical treatment. The experiments featured two different motor tasks involving three high-level gestures and individual finger movement. We used log-transformed bandpower features from the high-gamma band (50-300 Hz, excluding power-line harmonics) for classification. On average, whitening improved the classification performance by about 11%. On whitened data, TVLDA outperformed LDA with feature selection by 11.8%, LDA with CSPs by 13.9%, and regularized LDA with vectorized features by 16.4%. At the same time, TVLDA only required one or two internal features to achieve this. TVLDA provides stable results even if very few trials are available. It is easy to implement, fully automatic and deterministic. Due to its low complexity, TVLDA is suited for real-time brain-computer interfaces. Training is done in less than a second. TVLDA performed particularly well in experiments with data from high-density electrode arrays. For example, the three high-level gestures were correctly identified at a rate of 99% over all subjects. Similarly, the decoding accuracy of individual fingers was 96% on average over all subjects. To our knowledge, these mean accuracies are the highest ever reported for three-class and five-class motor-control BCIs.

7.
J Neurosci Methods ; 311: 67-75, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292823

RESUMO

BACKGROUND: Electrical stimulation of the cortex using subdurally implanted electrodes can causally reveal structural connectivity by eliciting cortico-cortical evoked potentials (CCEPs). While many studies have demonstrated the potential value of CCEPs, the methods to evaluate them were often relatively subjective, did not consider potential artifacts, and did not lend themselves to systematic scientific investigations. NEW METHOD: We developed an automated and quantitative method called SIGNI (Stimulation-Induced Gamma-based Network Identification) to evaluate cortical population-level responses to electrical stimulation that minimizes the impact of electrical artifacts. We applied SIGNI to electrocorticographic (ECoG) data from eight human subjects who were implanted with a total of 978 subdural electrodes. Across the eight subjects, we delivered 92 trains of approximately 200 discrete electrical stimuli each (amplitude 4-15 mA) to a total of 64 electrode pairs. RESULTS: We verified SIGNI's efficacy by demonstrating a relationship between the magnitude of evoked cortical activity and stimulation amplitude, as well as between the latency of evoked cortical activity and the distance from the stimulated locations. CONCLUSIONS: SIGNI reveals the timing and amplitude of cortical responses to electrical stimulation as well as the structural connectivity supporting these responses. With these properties, it enables exploration of new and important questions about the neurophysiology of cortical communication and may also be useful for pre-surgical planning.


Assuntos
Córtex Cerebral/fisiologia , Estimulação Elétrica/métodos , Eletrocorticografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Artefatos , Eletrocorticografia/instrumentação , Eletrodos Implantados , Potenciais Evocados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Neurosurg ; 129(5): 1182-1194, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271713

RESUMO

OBJECTIVERecent neuroimaging studies suggest that intractable epilepsy involves pathological functional networks as well as strong epileptogenic foci. Combining cortico-cortical evoked potential (CCEP) recording and tractography is a useful strategy for mapping functional connectivity in normal and pathological networks. In this study, the authors sought to demonstrate the efficacy of preoperative combined CCEP recording, high gamma activity (HGA) mapping, and tractography for surgical planning, and of intraoperative CCEP measures for confirmation of selective pathological network disconnection.METHODSThe authors treated 4 cases of intractable epilepsy. Diffusion tensor imaging-based tractography data were acquired before the first surgery for subdural grid implantation. HGA and CCEP investigations were done after the first surgery, before the second surgery was performed to resect epileptogenic foci, with continuous CCEP monitoring during resection.RESULTSAll 4 patients in this report had measurable pathological CCEPs. The mean negative peak-1 latency of normal CCEPs related to language functions was 22.2 ± 3.5 msec, whereas pathological CCEP latencies varied between 18.1 and 22.4 msec. Pathological CCEPs diminished after complete disconnection in all cases. At last follow-up, all of the patients were in long-term postoperative seizure-free status, although 1 patient still suffered from visual aura every other month.CONCLUSIONSCombined CCEP measurement, HGA mapping, and tractography greatly facilitated targeted disconnection of pathological networks in this study. Although CCEP recording requires technical expertise, it allows for assessment of pathological network involvement in intractable epilepsy and may improve seizure outcome.


Assuntos
Encéfalo/cirurgia , Conectoma , Epilepsia/cirurgia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Neuroimagem
9.
Proc Natl Acad Sci U S A ; 114(46): 12285-12290, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087337

RESUMO

Neuroscientists have long debated whether some regions of the human brain are exclusively engaged in a single specific mental process. Consistent with this view, fMRI has revealed cortical regions that respond selectively to certain stimulus classes such as faces. However, results from multivoxel pattern analyses (MVPA) challenge this view by demonstrating that category-selective regions often contain information about "nonpreferred" stimulus dimensions. But is this nonpreferred information causally relevant to behavior? Here we report a rare opportunity to test this question in a neurosurgical patient implanted for clinical reasons with strips of electrodes along his fusiform gyri. Broadband gamma electrocorticographic responses in multiple adjacent electrodes showed strong selectivity for faces in a region corresponding to the fusiform face area (FFA), and preferential responses to color in a nearby site, replicating earlier reports. To test the causal role of these regions in the perception of nonpreferred dimensions, we then electrically stimulated individual sites while the patient viewed various objects. When stimulated in the FFA, the patient reported seeing an illusory face (or "facephene"), independent of the object viewed. Similarly, stimulation of color-preferring sites produced illusory "rainbows." Crucially, the patient reported no change in the object viewed, apart from the facephenes and rainbows apparently superimposed on them. The functional and anatomical specificity of these effects indicate that some cortical regions are exclusively causally engaged in a single specific mental process, and prompt caution about the widespread assumption that any information scientists can decode from the brain is causally relevant to behavior.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Reconhecimento Visual de Modelos , Lobo Temporal/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Cor , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Estimulação Elétrica , Eletrodos Implantados , Face/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia
10.
J Neural Eng ; 14(6): 066015, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28776500

RESUMO

OBJECTIVE: This paper discusses the invariance and variability in interaction error-related potentials (ErrPs), where a special focus is laid upon the factors of (1) the human mental processing required to assess interface actions (2) time (3) subjects. APPROACH: Three different experiments were designed as to vary primarily with respect to the mental processes that are necessary to assess whether an interface error has occurred or not. The three experiments were carried out with 11 subjects in a repeated-measures experimental design. To study the effect of time, a subset of the recruited subjects additionally performed the same experiments on different days. MAIN RESULTS: The ErrP variability across the different experiments for the same subjects was found largely attributable to the different mental processing required to assess interface actions. Nonetheless, we found that interaction ErrPs are empirically invariant over time (for the same subject and same interface) and to a lesser extent across subjects (for the same interface). SIGNIFICANCE: The obtained results may be used to explain across-study variability of ErrPs, as well as to define guidelines for approaches to the ErrP classifier transferability problem.


Assuntos
Interfaces Cérebro-Computador/classificação , Encéfalo/fisiologia , Potenciais Evocados P300/fisiologia , Processos Mentais/fisiologia , Adulto , Eletroencefalografia/classificação , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Processamento de Sinais Assistido por Computador
11.
IEEE Trans Neural Syst Rehabil Eng ; 25(9): 1622-1632, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28026777

RESUMO

The development of technological applications that allow people to control and embody external devices within social interaction settings represents a major goal for current and future brain-computer interface (BCI) systems. Prior research has suggested that embodied systems may ameliorate BCI end-user's experience and accuracy in controlling external devices. Along these lines, we developed an immersive P300-based BCI application with a head-mounted display for virtual-local and robotic-remote social interactions and explored in a group of healthy participants the role of proprioceptive feedback in the control of a virtual surrogate (Study 1). Moreover, we compared the performance of a small group of people with spinal cord injury (SCI) to a control group of healthy subjects during virtual and robotic social interactions (Study 2), where both groups received a proprioceptive stimulation. Our attempt to combine immersive environments, BCI technologies and neuroscience of body ownership suggests that providing realistic multisensory feedback still represents a challenge. Results have shown that healthy and people living with SCI used the BCI within the immersive scenarios with good levels of performance (as indexed by task accuracy, optimizations calls and Information Transfer Rate) and perceived control of the surrogates. Proprioceptive feedback did not contribute to alter performance measures and body ownership sensations. Further studies are necessary to test whether sensorimotor experience represents an opportunity to improve the use of future embodied BCI applications.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados P300 , Sistemas Homem-Máquina , Robótica/métodos , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Interface Usuário-Computador , Adulto , Feminino , Humanos , Imaginação , Masculino , Movimento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise e Desempenho de Tarefas , Adulto Jovem
12.
World Neurosurg ; 97: 123-131, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27686506

RESUMO

BACKGROUND: We developed a functional brain analysis system that enabled us to perform real-time task-related electrocorticography (ECoG) and evaluated its potential in clinical practice. We hypothesized that high gamma activity (HGA) mapping would provide better spatial and temporal resolution with high signal-to-noise ratios. METHODS: Seven awake craniotomy patients were evaluated. ECoG was recorded during language tasks using subdural grids, and HGA (60-170 Hz) maps were obtained in real time. The patients also underwent electrocortical stimulation (ECS) mapping to validate the suspected functional locations on HGA mapping. The results were compared and calculated to assess the sensitivity and specificity of HGA mapping. For reference, bedside HGA-ECS mapping was performed in 5 epilepsy patients. RESULTS: HGA mapping demonstrated functional brain areas in real time and was comparable with ECS mapping. Sensitivity and specificity for the language area were 90.1% ± 11.2% and 90.0% ± 4.2%, respectively. Most HGA-positive areas were consistent with ECS-positive regions in both groups, and there were no statistical between-group differences. CONCLUSIONS: Although this study included a small number of subjects, it showed real-time HGA mapping with the same setting and tasks under different conditions. This study demonstrates the clinical feasibility of real-time HGA mapping. Real-time HGA mapping enabled simple and rapid detection of language functional areas in awake craniotomy. The mapping results were highly accurate, although the mapping environment was noisy. Further studies of HGA mapping may provide the potential to elaborate complex brain functions and networks.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Mapeamento Encefálico , Ritmo Gama/fisiologia , Idioma , Vigília , Adulto , Encefalopatias/cirurgia , Craniotomia/métodos , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
13.
J Neurosurg ; 125(6): 1580-1588, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26991386

RESUMO

OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/cirurgia , Craniotomia/métodos , Potenciais Evocados , Lobo Frontal , Idioma , Lobo Temporal , Vigília , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
J Clin Neurophysiol ; 32(3): e12-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25761260

RESUMO

PURPOSE: To evaluate the use of the cortiQ-based mapping system (g.tec medication engineering GmbH, Austria) for real-time functional mapping (RTFM) and to compare it to results from electrical cortical stimulation mapping (ESM) and functional magnetic resonance imaging (fMRI). METHODS: Electrocorticographic activity was recorded in 3 male patients with intractable epilepsy by using cortiQ mapping system and analyzed in real time. Activation related to motor, sensory, and receptive language tasks was determined by evaluating the power of the high gamma frequency band (60-170 Hz). The sensitivity and specificity of RTFM were tested against ESM and fMRI results. RESULTS: "Next-neighbor" approach demonstrated [sensitivity/specificity %] (1) RTFM against ESM: 100.00/79.70 for hand motor; 100.00/73.87 for hand sensory; -/87 for language (it was not identified by the ESM); (2) RTFM against fMRI: 100.00/84.4 for hand motor; 66.70/85.35 for hand sensory; and 87.85/77.70 for language. CONCLUSIONS: The results of the quantitative "next-neighbor" RTFM evaluation were concordant to those from ESM and fMRI. The RTFM correlates well with localization of hand motor function provided by ESM and fMRI, which may offer added localization in the operating room and guidance for extraoperative ESM mapping. Real-time functional mapping correlates with fMRI language activation when ESM findings are negative. It has fewer limitations than ESM and greater flexibility in activation paradigms and measuring responses.


Assuntos
Mapeamento Encefálico/métodos , Sistemas Computacionais , Eletrocorticografia/métodos , Epilepsia/cirurgia , Adolescente , Adulto , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Modelagem Computacional Específica para o Paciente , Software , Tomografia Computadorizada por Raios X , Adulto Jovem
15.
Neurol Med Chir (Tokyo) ; 54(10): 775-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25263624

RESUMO

There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/cirurgia , Encéfalo/irrigação sanguínea , Sistemas Computacionais , Craniotomia/métodos , Ritmo Gama/fisiologia , Verde de Indocianina , Malformações Arteriovenosas Intracranianas/cirurgia , Monitorização Intraoperatória/métodos , Doença de Moyamoya/fisiopatologia , Doença de Moyamoya/cirurgia , Neurocirurgia/métodos , Imagem de Perfusão/métodos
16.
World Neurosurg ; 82(5): 912.e1-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108295

RESUMO

BACKGROUND: Electrocortical stimulation (ECS) is the gold standard for functional brain mapping during an awake craniotomy. The critical issue is to set aside enough time to identify eloquent cortices by ECS. High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram is assumed to reflect localized cortical processing. In this report, we used real-time HGA mapping and functional neuronavigation integrated with functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. METHODS: Four patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. During the craniotomy, we recorded electrocorticogram activity by placing subdural grids directly on the exposed brain surface. RESULTS: Each patient performed motor and language tasks and demonstrated real-time HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared with ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. We found different HGA dynamics of language tasks in frontal and temporal regions. Specificities of the motor and language-fMRI did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. CONCLUSIONS: This novel technique enables rapid and accurate identification of motor and frontal language areas. Furthermore, real-time HGA mapping sheds light on underlying physiological mechanisms related to human brain functions.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/cirurgia , Craniotomia/métodos , Glioblastoma/cirurgia , Imageamento por Ressonância Magnética/métodos , Monitorização Intraoperatória/métodos , Adulto , Idoso , Eletrodos Implantados , Eletroencefalografia/métodos , Lobo Frontal/fisiologia , Lobo Frontal/cirurgia , Humanos , Complicações Intraoperatórias/prevenção & controle , Idioma , Masculino , Pessoa de Meia-Idade , Lobo Parietal/fisiologia , Lobo Parietal/cirurgia , Vigília
17.
Front Syst Neurosci ; 8: 139, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147509

RESUMO

A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed.

18.
Artigo em Inglês | MEDLINE | ID: mdl-24111197

RESUMO

Planning for epilepsy surgery depends substantially on the localization of brain cortical areas responsible for sensory, motor, or cognitive functions, clinically also known as eloquent cortex. In this paper, we present the novel software package 'cortiQ' that allows clinicians to localize eloquent cortex, thus providing a safe margin for surgical resection with a low incidence of neurological deficits. This software can be easily used in addition to traditional mapping procedures such as the electrical cortical stimulation (ECS) mapping. The software analyses task-related changes in gamma activity recorded from implanted subdural electrocorticography electrodes using extensions to previously published methods. In this manuscript, we describe the system's architecture and workflow required to obtain a map of the eloquent cortex. We validate the system by comparing our mapping results with those acquired using ECS mapping in two subjects. Our results indicate that cortiQ reliably identifies eloquent cortex much faster (several minutes compared to an hour or more) than ECS mapping. Next-neighbour analyses show that there are no false positives and an average of 1.24% false negatives.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia , Software , Mapeamento Encefálico/instrumentação , Estimulação Elétrica , Eletrodos Implantados , Epilepsia/fisiopatologia , Humanos
19.
Front Neurosci ; 6: 169, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23181009

RESUMO

Brain-computer interfaces (BCI) are communication systems that allow people to send messages or commands without movement. BCIs rely on different types of signals in the electroencephalogram (EEG), typically P300s, steady-state visually evoked potentials (SSVEP), or event-related desynchronization. Early BCI systems were often evaluated with a selected group of subjects. Also, many articles do not mention data from subjects who performed poorly. These and other factors have made it difficult to estimate how many people could use different BCIs. The present study explored how many subjects could use an SSVEP BCI. We recorded data from 53 subjects while they participated in 1-4 runs that were each 4 min long. During these runs, the subjects focused on one of four LEDs that each flickered at a different frequency. The eight channel EEG data were analyzed with a minimum energy parameter estimation algorithm and classified with linear discriminant analysis into one of the four classes. Online results showed that SSVEP BCIs could provide effective communication for all 53 subjects, resulting in a grand average accuracy of 95.5%. About 96.2% of the subjects reached an accuracy above 80%, and nobody was below 60%. This study showed that SSVEP based BCI systems can reach very high accuracies after only a very short training period. The SSVEP approach worked for all participating subjects, who attained accuracy well above chance level. This is important because it shows that SSVEP BCIs could provide communication for some users when other approaches might not work for them.

20.
Artigo em Inglês | MEDLINE | ID: mdl-23366764

RESUMO

Brain-computer interface (BCI) systems translate brain activity into messages or commands. BCI studies that record from a dozen or more subjects typically report substantial variations in performance, as measured by accuracy. Usually, some subjects attain excellent (even perfect) accuracy, while at least one subject performs so poorly that effective communication would not be possible with that BCI. This study aims to further explore the differences between the best and worst performers by studying the changes in estimated accuracy within each trial in an offline simulation of an SSVEP BCI. Results showed that the worst performers not only attained lower accuracies, but needed more time after cue onset before their accuracies improved substantially. This outcome suggests that poor performance may be partly (though not completely) explained by the latency between cue onset and improved accuracy.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Visuais/fisiologia , Interface Usuário-Computador , Adolescente , Adulto , Idoso , Criança , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...