Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(5): 7063-7072, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077151

RESUMO

Organic field-effect transistors (OFETs) have shown great potential for applications that require low temperature deposition on large and flexible substrates. To increase their performance, in particular a high transconductance and transit frequency, the transistor channel length has to be scaled into the submicrometer regime, which can be easily achieved in vertical organic field effect transistors (VOFETs). However, despite high performance observed in VOFETs, these transistors usually suffer from short channel effects like weak saturation of the drain current and direct source-drain leakage resulting in large off currents. Here, we study the influence of the injection barrier at the source electrode on the OFF currents, on/off ratio, and transconductance of vertical OFETs. We use two semiconducting materials, 2,6-diphenyl anthracene (DPA), and C60 to vary the injection barrier at the source electrode and are able to show that increasing the Schottky barrier at the source electrode can decrease the direct source/drain leakage by 3 orders of magnitude. However, the increased injection barrier at the source electrode comes at the expense of an increased contact resistance, which in turn will decrease its transconductance and transit frequency. With the help of a 2D drift-diffusion simulation we show that the trade-off between low off currents and high transconductance is inherent to the current VOFET device setup and that new approaches have to be found to design VOFETs that combine good switching properties with high performance.

2.
Nat Commun ; 11(1): 2515, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433542

RESUMO

Organic Electrochemical Transistors are versatile sensors that became essential for the field of organic bioelectronics. However, despite their importance, an incomplete understanding of their working mechanism is currently precluding a targeted design of Organic Electrochemical Transistors and it is still challenging to formulate precise design rules guiding materials development in this field. Here, it is argued that current capacitive device models neglect lateral ion currents in the transistor channel and therefore fail to describe the equilibrium state of Organic Electrochemical Transistors. An improved model is presented, which shows that lateral ion currents lead to an accumulation of ions at the drain contact, which significantly alters the transistor behavior. Overall, these results show that a better understanding of the interface between the organic semiconductor and the drain electrode is needed to reach a full understanding of Organic Electrochemical Transistors.

3.
Macromol Rapid Commun ; 41(6): e1900636, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32022395

RESUMO

Preparation and low voltage induced bending (converse flexoelectricity) of crosslinked poly(ethylene glycol) diacrylate (PEGDA), modified with thiosiloxane (TS) and ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) (IL) are reported. In between 2µm PEDOT:PSS electrodes at 1 V, it provides durable (95% retention under 5000 cycles) and relatively fast (2 s switching time) actuation with the second largest strain observed so far in ionic electro-active polymers (iEAPs). In between 40 nm gold electrodes under 8 V DC voltage, the film can be completely curled up (270° bending angle) with 6% strain that, to the best of the knowledge, is unpreceded among iEAPs. These results render great potential for the TS/PEGDA/IL based electro-active actuators for soft robotic applications.


Assuntos
Elastômeros/química , Polietilenoglicóis/química , Boratos/química , Elastômeros/síntese química , Eletrodos , Ouro/química , Imidazóis/química , Líquidos Iônicos/química , Íons/química , Robótica/instrumentação , Robótica/métodos , Materiais Inteligentes/química
4.
Macromol Rapid Commun ; 40(19): e1900299, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31348584

RESUMO

This paper describes the preparation, physical properties, and electric bending actuation of a new class of active materials-ionic liquid crystal elastomers (iLCEs). It is demonstrated that iLCEs can be actuated by low-frequency AC or DC voltages of less than 1 V. The bending strains of the unoptimized first iLCEs are already comparable to the well-developed ionic electroactive polymers. Additionally, iLCEs exhibit several novel and superior features, such as the alignment that increases the performance of actuation, the possibility of preprogrammed actuation patterns at the level of the cross-linking process, and dual (thermal and electric) actuations in hybrid samples. Since liquid crystal elastomers are also sensitive to magnetic fields and can also be light sensitive, iLCEs have far-reaching potentials toward multiresponsive actuations that may have so far unmatched properties in soft robotics, sensing, and biomedical applications.


Assuntos
Elastômeros/química , Cristais Líquidos/química , Capacitância Elétrica , Estrutura Molecular
5.
Nanotechnology ; 29(28): 284001, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29570095

RESUMO

The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from -3.1 to -0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = -10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.

6.
Sci Rep ; 8(1): 699, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335503

RESUMO

Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.

7.
Adv Mater ; 28(39): 8766-8770, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27511804

RESUMO

Injection at the source contact critically determines the behavior of depletion-type organic electrochemical transistors (OETs). The contact resistance of OETs increases exponentially with the gate voltage and strongly influences the modulation of the drain current by the gate voltage over a wide voltage range. A modified standard model accounting contact resistance can explain the particular shape of the transconductance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...