Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(35): e2304790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867208

RESUMO

Further improvement of the performance and stability of inverted perovskite solar cells (PSCs) is necessary for commercialization. Here, ferrocene derivative dibenzoylferrocene (DBzFe) is used as an additive to enhance the performance and stability of MA- and Br- free PSCs. The results show that the introduction of DBzFe not only passivates the defects in the film but also inhibits the ion migration in the film. The final device achieves a power conversion efficiency (PCE) of 23.53%, which is one of the highest efficiencies currently based on self-assembled monolayers (SAMs). Moreover, it maintains more than 96.4% of the original efficiency when running continuously for 400 h at the maximum power point.

2.
ACS Appl Mater Interfaces ; 15(35): 41549-41559, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37606594

RESUMO

This report is on the efficiency enhancement of wide bandgap lead halide perovskite solar cells (WBG Pb-PVK PSCs) consisting of FA0.8Cs0.2PbI1.8Br1.2 as the light-harvesting layer. WGB Pb-PVK PSCs have attracted attention as the top layer of all perovskite-tandem solar cells. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), a conductive polymer, is always used as the hole transporting layer (HTL) for Pb-PVK PSCs. Nevertheless, the hydrophobic surface of the PTAA sometimes destroys the growth of the FA0.8Cs0.2PbI1.8Br1.2 film. On the other hand, the Fermi level of PTAA is not well matched with that of perovskite film. Thus, the PCE of the WBG Pb-based PSCs with PTAA as the HTL was not very high. In this report, the efficiency of the FA0.8Cs0.2PbI1.8Br1.2 is improved by passivating the surface of the PTAA with a monomolecular layer, where the surface becomes hydrophilic, and the band bending of the PTAA layer is improved to cause swift hole collection. Finally, WBG Pb-PVK PSCs (1.77 eV) with 16.52% efficiency are reported.

3.
Angew Chem Int Ed Engl ; 62(33): e202307228, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37337312

RESUMO

The photoelectric properties of nontoxic Sn-based perovskite make it a promising alternative to toxic Pb-based perovskite. It has superior photovoltaic performance in comparison to other Pb-free counterparts. The facile oxidation of Sn2+ to Sn4+ presents a notable obstacle in the advancement of perovskite solar cells that utilize Sn, as it adversely affects their stability and performance. The study revealed the presence of a Sn4+ concentration on both the upper and lower surfaces of the perovskite layer. This discovery led to the adoption of a bi-interface optimization approach. A thin layer of Sn metal was inserted at the two surfaces of the perovskite layer. The implementation of this intervention yielded a significant decrease in the levels of Sn4+ and trap densities. The power conversion efficiency of the device was achieved at 14.31 % through the optimization of carrier transportation. The device exhibited operational and long-term stability.

4.
Angew Chem Int Ed Engl ; 61(42): e202210101, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36052641

RESUMO

Lead-free tin perovskite solar cells (PKSCs) have attracted tremendous interest as a replacement for toxic lead-based PKSCs. Nevertheless, the efficiency is significantly low due to the rough surface morphology and high number of defects, which are caused by the fast crystallization and easy oxidization. In this study, a facile and universal posttreatment strategy of sequential passivation with acetylacetone (ACAC) and ethylenediamine (EDA) is proposed. The results show that ACAC can reduce the trap density and enlarge the grain size (short-circuit current (Jsc ) enhancement), while EDA can bond the undercoordinated tin and regulate the energy level (open-circuit voltage (Voc ) enhancement). A promising 13 % efficiency is achieved with better stability. In addition, other combinations of diketones or amines are selected, with similar effects. This study provides a universal strategy to enhance the crystallinity and passivate defects while fabricating stable PKSCs with high efficiency.

5.
ACS Appl Mater Interfaces ; 14(31): 36200-36208, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881921

RESUMO

Sn halide perovskite solar cells (PKSCs) are the most promising competitors to conventional lead PKSCs. Nevertheless, defects at the surfaces and grain boundaries hinder the improvement of the PKSCs' performance. Liquid surface passivation on the perovskite layer is commonly used to decrease these defects. In the case of tin perovskite solar cells, the liquid passivation improved the open-circuit voltage (Voc). However, this decreased the short-circuit current density (Jsc). We found that this Jsc loss is brought about by the thickness loss after the liquid passivation because tin perovskite layers are partially soluble in common solvents, and the calculated impact pressure was up to 155.4 kPa. Here, we introduce new vapor passivation including solvent and passivation molecules and report efficiency enhancement without decreasing Jsc. The vapor-passivated film showed longer time-resolved photoluminescence decay, smoother morphology, and lower defect densities. Most importantly, the vapor passivation method significantly enhanced the efficiency from 9.41 to 11.29% with Jsc increasing from 22.82 to 24.05 mA·cm-2. On the contrary, the corresponding liquid passivation method gave an efficiency of 10.90% with a decreased Jsc from 22.82 to 22.38 mA·cm-2. A commonly used and simple indent-free surface passivation strategy is proposed to enhance the efficiency and stability of PKSCs.

6.
J Phys Chem Lett ; 13(13): 3130-3137, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357181

RESUMO

Overcoming Voc loss to increase the efficiency of perovskite solar cells (PSCs) has been aggressively studied. In this work, we introduce and compare rubidium iodide (RbI) and potassium iodide (KI) alkali metal halides (AMHs) as dopants in a tin-lead (SnPb)-based perovskite system to improve the performance of PSCs by enhancing their Voc. Improvement in terms of surface morphology, crystallinity, charge transfer, and carrier transport in the SnPb perovskites was observed with the addition of AMH dopants. Significant power conversion efficiency improvement has been achieved with the incorporation of either dopant, and the highest efficiency was 21.04% in SnPb mixed halide PSCs when the RbI dopant was employed. In conclusion, we can outline the enhancement strategy that yields a remarkable efficiency of >20% with a smaller Voc loss and improved storage, light, and thermal stability in SnPb PSCs via doping engineering.

7.
ChemSusChem ; 11(22): 3941-3948, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30225914

RESUMO

Trap states at the interface or in bulk perovskite materials critically influence perovskite solar cells performance and long-term stability. Here, a strategy for efficiently passivating charge traps and mitigating interfacial recombination by SnO2 surface sulfur functionalization is reported, which utilizes xanthate decomposition on the SnO2 surface at low temperature. The results show that functionalized sulfur atoms can coordinate with under-coordinated Pb2+ ions near the interface. After device fabrication under more than 60 % humidity in ambient air, the efficiency of methylammonium lead iodide (MAPbI3 ) perovskite solar cells based on sulfur-functionalized SnO2 increased from 16.56 % to 18.41 % with suppressed hysteresis, which resulted from the accelerated interfacial charge transport kinetics and decreased traps in bulk perovskite by interfacial sulfur functionalization. Additionally, thermally stimulated current studies show the decreased trap density in the shallow trap area after interfacial sulfur functionalization. The interfacial sulfur functionalized solar cells without sealing also exhibited considerable retardation of solar cell degradation with only 10 % degradation after 70 days air storage. This work demonstrates a facile sulfur functionalization strategy by using xanthate decomposition on SnO2 surfaces to obtain highly efficient perovskite solar cells.

8.
ACS Appl Mater Interfaces ; 10(35): 29630-29637, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30113803

RESUMO

TiO2 is commonly used as an electron-transporting material in perovskite photovoltaic devices due to its advantages, including suitable band gap, good photoelectrochemical stability, and simple preparation process. However, there are many oxygen vacancies or defects on the surface of TiO2 and thus this affects the stability of TiO2-based perovskite solar cells under UV light. In this work, a thin (monolayer) SbI3 modification layer is introduced on the mesoporous TiO2 surface and the effect at the interface between of TiO2 and perovskite is monitored by using a quartz crystal microbalance system. We demonstrate that the SbI3-modified TiO2 electrodes exhibit superior electronic properties by reducing electronic trap states, enabling faster electron transport. This approach results in higher performances compared with electrodes without the SbI3 passivation layer. CH3NH3PbI3 perovskite solar cells with a maximum power conversion efficiency of 17.33% in air, accompanied by a reduction in hysteresis and enhancement of the device stability, are reported.

9.
Angew Chem Int Ed Engl ; 57(39): 12745-12749, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30069989

RESUMO

Compared with organic-inorganic perovskites, all-inorganic cesium-based perovskites without volatile organic compounds have gained extensive interests because of the high thermal stability. However, they have a problem on phase transition from cubic phase (active for photo-electric conversion) to orthorhombic phase (inactive for photo-electric conversion) at room temperature, which has hindered further progress. Herein, novel inorganic CsPb1-x Gex I2 Br perovskites were prepared in humid ambient atmosphere without a glovebox. The phase stability of the all-inorganic perovskite was effectively enhanced after germanium addition. In addition, the highest power conversion efficiency of 10.8 % with high open-circuit voltage (VOC ) of 1.27 V in a planar solar cell based on CsPb0.8 Ge0.2 I2 Br perovskite was achieved. Furthermore, the highest VOC up to 1.34 V was obtained by CsPb0.7 Ge0.3 I2 Br perovskite, which is a remarkable record in the field of all-inorganic perovskite solar cells. More importantly, all the photovoltaic parameters of CsPb0.8 Ge0.2 I2 Br perovskite solar cells showed nearly no decay after 7 h measurement in 50-60 % relative humidity without encapsulation.

10.
ACS Appl Mater Interfaces ; 10(29): 24543-24548, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29969012

RESUMO

Despite the high efficiency of MAPbI3 perovskite solar cells, the long term stability and degradation in humid atmosphere are issues that still needed to be addressed. In this work, magnesium iodide (MgI2) was first successfully used as a dopant into MAPbI3 perovskite prepared in humid air atmosphere. Mg doping decreased the valence band level, which was determined from photoelectron yield spectroscopy. Compared to the pristine MAPbI3 perovskite film, the 1.0% Mg-doped perovskite film showed increased crystal grain size and formation of pinhole-free perovskite film. Performance of the solar cell was increased from 14.2% of the doping-free solar cell to 17.8% of 1.0% Mg-doped device. Moreover, 90% of the original power conversion efficiency was still retained after storage in 30-40% relative humidity for 600 h.

11.
ChemSusChem ; 11(17): 2930-2935, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29920992

RESUMO

Bismuth-based solar cells have been under intensive interest as an efficient non-toxic absorber in photovoltaics. Within this new family of semiconductors, we herein report a new, long-term stable copper bismuth iodide (CuBiI4 ). A solutionprocessed method under air atmosphere is used to prepare the material. The adopted HI-assisted dimethylacetamide (DMA) co-solvent can completely dissolve CuI and BiI3 powders with high concentration compared with other organic solvents. Moreover, the high vapor pressure of tributyl phosphate, selected for the solvent vapor annealing (SVA), enables complete low-temperature (≤70 °C) film preparation, resulting in a stable, uniform, dense CuBiI4 film. The average grain size increases with the precursor concentration, greatly improving the photoluminescence lifetime and hall mobility; a carrier lifetime of 3.03 ns as well as an appreciable hall mobility of 110 cm2 V-1 s-1 were obtained. XRD illustrates that the crystal structure is cubic (space group Fd3m) and favored in the [1 1 1] direction. Moreover, the photovoltaic performance of CuBiI4 was also investigated. A wide bandgap (2.67 eV) solar cell with 0.82 % power conversion efficiency is presented, which exhibits excellent long-term stability over 1008 h under ambient conditions. This air-stable material may give an application in future tandem solar cells as a stable short-wavelength light absorber.

12.
ACS Appl Mater Interfaces ; 10(19): 16482-16489, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29733567

RESUMO

High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH3NH3PbI3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.

13.
ChemSusChem ; 11(14): 2348-2357, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29727046

RESUMO

Perovskite solar cells have attracted considerable attention owing to their easy and low-cost solution manufacturing process with high power conversion efficiency. However, the fabrication process is usually performed inside a glovebox to avoid moisture, as organometallic halide perovskites are easily dissolved in water. In this study, we propose a one-step fabrication of high-quality MAPbI3 perovskite films in around 50 % relative humidity (RH) humid ambient air by using diethyl ether as an antisolvent and methanol as an additive into this antisolvent. Because of the presence of methanol, the water molecules can be efficiently removed from the gaps of the perovskite precursors and the perovskite film formation can be slightly controlled, leading to pinhole-free and low roughness films. Concurrently, methanol can be used to tune the DMSO ratio in the intermediate perovskite phase to regulate perovskite formation. Planar solar cells fabricated by using this method exhibited the best efficiency of 16.4 % with a reduced current density-voltage hysteresis. This efficiency value is approximately 160 % higher than the devices fabrication by using only diethyl ether treatment. From the impedance measurement, it is also found that the recombination reaction is suppressed when the device is prepared with methanol additive in the antisolvent. This method presents a new path for controlling the growth and morphology of perovskite films in humid climates and laboratories with uncontrolled environments.

14.
Nano Lett ; 18(6): 3600-3607, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701473

RESUMO

Frequently observed high Voc loss in tin-lead mixed perovskite solar cells is considered to be one of the serious bottle-necks in spite of the high attainable Jsc due to wide wavelength photon harvesting. An amicable solution to minimize the Voc loss up to 0.50 V has been demonstrated by introducing an n-type interface with spike structure between the absorber and electron transport layer inspired by highly efficient Cu(In,Ga)Se2 solar cells. Introduction of a conduction band offset of ∼0.15 eV with a thin phenyl-C61-butyric acid methyl ester layer (∼25 nm) on the top of perovskite absorber resulted into improved Voc of 0.75 V leading to best power conversion efficiency of 17.6%. This enhancement is attributed to the facile charge flow at the interface owing to the reduction of interfacial traps and carrier recombination with spike structure as evidenced by time-resolved photoluminescence, nanosecond transient absorption, and electrochemical impedance spectroscopy measurements.

15.
J Nanosci Nanotechnol ; 16(4): 3183-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451601

RESUMO

A very good performance under low/diffused light intensities is one of the application areas in which dye-sensitized solar cells (DSSCs) can be utilized effectively compared to their inorganic silicon solar cell counterparts. In this article, we have investigated the 1 SUN and low intensity fluorescent light performance of Titanium (Ti)-coil based cylindrical DSSC (C-DSSC) using ruthenium based N719 dye and organic dyes such as D205 and Y123. Electrochemical impedance spectroscopic results were analyzed for variable solar cell performances. Reflecting mirror with parabolic geometry as concentrator was also utilized to tap diffused light for indoor applications. Fluorescent light at relatively lower illumination intensities (0.2 mW/cm2 to 0.5 mW/cm2) were used for the investigation of TCO-less C-DSSC performance with and without reflector geometry. Furthermore, the DSSC performances were analyzed and compared with the commercially available amorphous silicon based solar cell for indoor applications.

16.
J Nanosci Nanotechnol ; 16(4): 3301-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451621

RESUMO

We report the structural and optoelectronic properties of Zinc oxide (ZnO) nanostructures prepared by hydrothermal method. The morphological, structural and optical properties of the grown ZnO nanostructures were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectroscopy (PL) respectively. Upon addition of relatively small amount of KI during the in-situ hydrothermal growth the nanorods were formed, further increasing the concentration led to increased diameter of these nanorods and finally at relatively higher concentration of KI, ZnO nanosheets were formed. Later these structures were used to fabricate bi-layer ZnO/P3HT based hybrid photodiode. Subsequent hybrid photodiode measurement with ZnO nanorods and ZnO nanosheets indicated that the nanosheets exhibited improved photodiode response. Compared to the ZnO nanorod/P3HT devices, the optimized photodiode with the dense ZnO nanosheets/P3HT have shown significant increase in the rectification ratio and the photosenstivity from 3.21 to 1420 and from 5.85 to 1330 respectively. The enhanced photodiode response of bi-layered devices consisting of ZnO nanosheets indicated that optimizing the shape and size of ZnO nanostructures had a significant influence on the overall photocurrent and the observed results have been explained on the basis of reduction in the defect density with pronounced absorption in the UV region, thus leading to improved transmission of light in the visible range through these layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...