Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293233

RESUMO

RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL and identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating epistasis between the TL and its surrounding context. We sought to understand the nature of this incompatibility and probe higher order epistasis internal to the TL. We have employed deep mutational scanning with selected natural TL variants ("haplotypes"), and all possible intermediate substitution combinations between them and the yeast Pol II TL. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.

2.
Nucleic Acids Res ; 52(5): 2546-2564, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214235

RESUMO

Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.


Assuntos
Pirrolidinonas , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Pirrolidinonas/farmacologia , RNA Polimerase II/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Zinco
3.
Nat Struct Mol Biol ; 31(1): 190-202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177677

RESUMO

Transcription start site (TSS) selection is a key step in gene expression and occurs at many promoter positions over a wide range of efficiencies. Here we develop a massively parallel reporter assay to quantitatively dissect contributions of promoter sequence, nucleoside triphosphate substrate levels and RNA polymerase II (Pol II) activity to TSS selection by 'promoter scanning' in Saccharomyces cerevisiae (Pol II MAssively Systematic Transcript End Readout, 'Pol II MASTER'). Using Pol II MASTER, we measure the efficiency of Pol II initiation at 1,000,000 individual TSS sequences in a defined promoter context. Pol II MASTER confirms proposed critical qualities of S. cerevisiae TSS -8, -1 and +1 positions, quantitatively, in a controlled promoter context. Pol II MASTER extends quantitative analysis to surrounding sequences and determines that they tune initiation over a wide range of efficiencies. These results enabled the development of a predictive model for initiation efficiency based on sequence. We show that genetic perturbation of Pol II catalytic activity alters initiation efficiency mostly independently of TSS sequence, but selectively modulates preference for the initiating nucleotide. Intriguingly, we find that Pol II initiation efficiency is directly sensitive to guanosine-5'-triphosphate levels at the first five transcript positions and to cytosine-5'-triphosphate and uridine-5'-triphosphate levels at the second position genome wide. These results suggest individual nucleoside triphosphate levels can have transcript-specific effects on initiation, representing a cryptic layer of potential regulation at the level of Pol II biochemical properties. The results establish Pol II MASTER as a method for quantitative dissection of transcription initiation in eukaryotes.


Assuntos
Polifosfatos , RNA Polimerase II , Saccharomyces cerevisiae , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Sítio de Iniciação de Transcrição , Nucleosídeos , Transcrição Gênica , Guanosina Trifosfato
4.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790421

RESUMO

Catalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive. Here we present the free electron laser (FEL) structure of a matched ATP-bound Pol II, revealing the full active site interaction network at the highest resolution to date, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structure indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/bridge helix (BH) interactions induce conformational changes that could propel translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the hyperactive Rpb1 T834P bridge helix mutant reveals rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.

7.
PLoS Comput Biol ; 19(3): e1010999, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947548

RESUMO

Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did so to determine relationships between individual mutations and phenotypes and to associate phenotypes with MD simulated structural alterations. Using fitness values of mutants under various stress conditions, we modeled phenotypes along a spectrum of continual values. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino acid sequences alone. It was more difficult to incorporate MD data to improve predictions from machine learning, presumably because MD data is too noisy and possibly incomplete to directly infer functional phenotypes. However, a variational auto-encoder model based on the MD data allowed the clustering of mutants with different phenotypes based on structural details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended to increase distances of TL residues to the NTP substrate, while another subset of LOF and lethal substitutions tended to confer an increase in distances between TL and bridge helix (BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of hydrophobic contacts among TL and nearby helices.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , Simulação de Dinâmica Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação , RNA Polimerases Dirigidas por DNA/metabolismo
8.
J Biol Chem ; 298(10): 102433, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041630

RESUMO

TFIIH is an evolutionarily conserved complex that plays central roles in both RNA polymerase II (pol II) transcription and DNA repair. As an integral component of the pol II preinitiation complex, TFIIH regulates pol II enzyme activity in numerous ways. The TFIIH subunit XPB/Ssl2 is an ATP-dependent DNA translocase that stimulates promoter opening prior to transcription initiation. Crosslinking-mass spectrometry and cryo-EM results have shown a conserved interaction network involving XPB/Ssl2 and the C-terminal Hub region of the TFIIH p52/Tfb2 subunit, but the functional significance of specific residues is unclear. Here, we systematically mutagenized the HubA region of Tfb2 and screened for growth phenotypes in a TFB6 deletion background in Saccharomyces cerevisiae. We identified six lethal and 12 conditional mutants. Slow growth phenotypes of all but three conditional mutants were relieved in the presence of TFB6, thus identifying a functional interaction between Tfb2 HubA mutants and Tfb6, a protein that dissociates Ssl2 from TFIIH. Our biochemical analysis of Tfb2 mutants with severe growth phenotypes revealed defects in Ssl2 association, with similar results in human cells. Further characterization of these tfb2 mutant cells revealed defects in GAL gene induction, and reduced occupancy of TFIIH and pol II at GAL gene promoters, suggesting that functionally competent TFIIH is required for proper pol II recruitment to preinitiation complexes in vivo. Consistent with recent structural models of TFIIH, our results identify key residues in the p52/Tfb2 HubA domain that are required for stable incorporation of XPB/Ssl2 into TFIIH and for pol II transcription.


Assuntos
DNA Helicases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fator de Transcrição TFIIH , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Mutagênese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
9.
Mol Cell ; 82(3): 660-676.e9, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051353

RESUMO

Previous structural studies of the initiation-elongation transition of RNA polymerase II (pol II) transcription have relied on the use of synthetic oligonucleotides, often artificially discontinuous to capture pol II in the initiating state. Here, we report multiple structures of initiation complexes converted de novo from a 33-subunit yeast pre-initiation complex (PIC) through catalytic activities and subsequently stalled at different template positions. We determine that PICs in the initially transcribing complex (ITC) can synthesize a transcript of ∼26 nucleotides before transitioning to an elongation complex (EC) as determined by the loss of general transcription factors (GTFs). Unexpectedly, transition to an EC was greatly accelerated when an ITC encountered a downstream EC stalled at promoter proximal regions and resulted in a collided head-to-end dimeric EC complex. Our structural analysis reveals a dynamic state of TFIIH, the largest of GTFs, in PIC/ITC with distinct functional consequences at multiple steps on the pathway to elongation.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase II/genética , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade , Fatores de Tempo , Elongação da Transcrição Genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
10.
Elife ; 102021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652274

RESUMO

In Saccharomyces cerevisiae, RNA polymerase II (Pol II) selects transcription start sites (TSSs) by a unidirectional scanning process. During scanning, a preinitiation complex (PIC) assembled at an upstream core promoter initiates at select positions within a window ~40-120 bp downstream. Several lines of evidence indicate that Ssl2, the yeast homolog of XPB and an essential and conserved subunit of the general transcription factor (GTF) TFIIH, drives scanning through its DNA-dependent ATPase activity, therefore potentially controlling both scanning rate and scanning extent (processivity). To address questions of how Ssl2 functions in promoter scanning and interacts with other initiation activities, we leveraged distinct initiation-sensitive reporters to identify novel ssl2 alleles. These ssl2 alleles, many of which alter residues conserved from yeast to human, confer either upstream or downstream TSS shifts at the model promoter ADH1 and genome-wide. Specifically, tested ssl2 alleles alter TSS selection by increasing or narrowing the distribution of TSSs used at individual promoters. Genetic interactions of ssl2 alleles with other initiation factors are consistent with ssl2 allele classes functioning through increasing or decreasing scanning processivity but not necessarily scanning rate. These alleles underpin a residue interaction network that likely modulates Ssl2 activity and TFIIH function in promoter scanning. We propose that the outcome of promoter scanning is determined by two functional networks, the first being Pol II activity and factors that modulate it to determine initiation efficiency within a scanning window, and the second being Ssl2/TFIIH and factors that modulate scanning processivity to determine the width of the scanning widow.


In eukaryotic organisms such as yeast, the process of converting genes into proteins begins with the transcription of DNA sequences into mRNA molecules. An enzyme called RNA Polymerase II (Pol II) is responsible for creating new strands of mRNA, but a variety of other so called transcription factors is also needed to kickstart the transcription process. These transcription factors are delivered to genes, where they attach to specific sequences, or promoters, which sit at the beginning of each gene. Once these transcription factors are in place, the double stranded DNA is unzipped to provide access to the DNA that will serve as the template for transcription. In budding yeast, Pol II and another specific transcription factor, known as TFIIH, work together to scan these promoter sequences to find the appropriate start sites of mRNA synthesis. However, several aspects of this process, such as how TFIIH works in promoter scanning, how far its scanning functions can extend, and how its activity is controlled, are currently poorly understood. Zhao et al. have investigated these questions in budding yeast. Using a range of genetic and genomic techniques, Zhao et al. found that certain sections of TFIIH were involved in choosing specific transcription start sites of mRNA synthesis during promoter scanning. These sections were identical in different eukaryotic organisms from yeast to humans, suggesting that these regions may be important for tuning or controlling the activity of TFIIH. Moreover, in yeast, the activity of TFIIH determines how far the scanning unit was able to move along the promoter DNA. Finally, Zhao et al. found that the initiation by promoter scanning was regulated by two distinct networks. The first network controlled how well mRNA synthesis could be initiated at individual transcription start sites; and the second network ­ driven by TFIIH ­ controlled which promoter sequences could be scanned to initiate transcription. This research provides an in-depth look into the early steps of the process of converting DNA into mRNA. The biological machinery used to initiate and control this action is highly conserved between yeast and humans, suggesting that the mechanisms for controlling the activity of these factors could be similar, even if their initiation processes may differ.


Assuntos
DNA Helicases/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIH/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , DNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/metabolismo
11.
Cell ; 184(15): 3850-3851, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34297929

RESUMO

Scientists have long been fascinated by the complexity of eukaryotic transcription and the large numbers of proteins involved at each step in the process. In this issue of Cell, Schilbach et al. bring us one important step closer to the goal of a complete understanding of transcription at atomic resolution.


Assuntos
Eucariotos , Células Eucarióticas
12.
Nat Commun ; 12(1): 3338, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099686

RESUMO

The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.


Assuntos
Microscopia Crioeletrônica , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/química , Adutos de DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIH/genética
13.
HGG Adv ; 2(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33665635

RESUMO

De novo germline variation in POLR2A was recently reported to associate with a neurodevelopmental disorder. We report twelve individuals harboring putatively pathogenic de novo or inherited variants in POLR2A, detail their phenotypes, and map all known variants to the domain structure of POLR2A and crystal structure of RNA polymerase II. Affected individuals were ascertained from a local data lake, pediatric genetics clinic, and an online community of families of affected individuals. These include six affected by de novo missense variants (including one previously reported individual), four clinical laboratory samples affected by missense variation with unknown inheritance-with yeast functional assays further supporting altered function-one affected by a de novo in-frame deletion, and one affected by a C-terminal frameshift variant inherited from a largely asymptomatic mother. Recurrently observed phenotypes include ataxia, joint hypermobility, short stature, skin abnormalities, congenital cardiac abnormalities, immune system abnormalities, hip dysplasia, and short Achilles tendons. We report a significantly higher occurrence of epilepsy (8/12, 66.7%) than previously reported (3/15, 20%) (p value = 0.014196; chi-square test) and a lower occurrence of hypotonia (8/12, 66.7%) than previously reported (14/15, 93.3%) (p value = 0.076309). POLR2A-related developmental disorders likely represent a spectrum of related, multi-systemic developmental disorders, driven by distinct mechanisms, converging at a single locus.

14.
J Biol Chem ; 296: 100485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662401

RESUMO

Copper is essential for the activity and stability of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Loss-of-function mutations in genes required for copper transport to CcO result in fatal human disorders. Despite the fundamental importance of copper in mitochondrial and organismal physiology, systematic identification of genes that regulate mitochondrial copper homeostasis is lacking. To discover these genes, we performed a genome-wide screen using a library of DNA-barcoded yeast deletion mutants grown in copper-supplemented media. Our screen recovered a number of genes known to be involved in cellular copper homeostasis as well as genes previously not linked to mitochondrial copper biology. These newly identified genes include the subunits of the adaptor protein 3 complex (AP-3) and components of the cellular pH-sensing pathway Rim20 and Rim21, both of which are known to affect vacuolar function. We find that AP-3 and Rim mutants exhibit decreased vacuolar acidity, which in turn perturbs mitochondrial copper homeostasis and CcO function. CcO activity of these mutants could be rescued by either restoring vacuolar pH or supplementing growth media with additional copper. Consistent with these genetic data, pharmacological inhibition of the vacuolar proton pump leads to decreased mitochondrial copper content and a concomitant decrease in CcO abundance and activity. Taken together, our study uncovered novel genetic regulators of mitochondrial copper homeostasis and provided a mechanism by which vacuolar pH impacts mitochondrial respiration through copper homeostasis.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Meios de Cultura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homeostase , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
15.
Bioessays ; 42(7): e2000002, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490565

RESUMO

The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.


Assuntos
Cromatina , Proteínas de Saccharomyces cerevisiae , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Humanos , Nucleossomos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo
16.
Genome Biol ; 21(1): 132, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487207

RESUMO

BACKGROUND: The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS: To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS: Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.


Assuntos
DNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores Genéricos de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Modelos Genéticos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
17.
EMBO Rep ; 21(4): e49315, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103605

RESUMO

RNA polymerase II (RNAPII) transcription is crucial for gene expression. RNAPII density peaks at gene boundaries, associating these key regions for gene expression control with limited RNAPII movement. The connections between RNAPII transcription speed and gene regulation in multicellular organisms are poorly understood. Here, we directly modulate RNAPII transcription speed by point mutations in the second largest subunit of RNAPII in Arabidopsis thaliana. A RNAPII mutation predicted to decelerate transcription is inviable, while accelerating RNAPII transcription confers phenotypes resembling auto-immunity. Nascent transcription profiling revealed that RNAPII complexes with accelerated transcription clear stalling sites at both gene ends, resulting in read-through transcription. The accelerated transcription mutant NRPB2-Y732F exhibits increased association with 5' splice site (5'SS) intermediates and enhanced splicing efficiency. Our findings highlight potential advantages of RNAPII stalling through local reduction in transcription speed to optimize gene expression for the development of multicellular organisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Polimerase II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica , Mutação Puntual , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
18.
Elife ; 82019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31364986

RESUMO

Nucleosomes represent mechanical and energetic barriers that RNA Polymerase II (Pol II) must overcome during transcription. A high-resolution description of the barrier topography, its modulation by epigenetic modifications, and their effects on Pol II nucleosome crossing dynamics, is still missing. Here, we obtain topographic and transcriptional (Pol II residence time) maps of canonical, H2A.Z, and monoubiquitinated H2B (uH2B) nucleosomes at near base-pair resolution and accuracy. Pol II crossing dynamics are complex, displaying pauses at specific loci, backtracking, and nucleosome hopping between wrapped states. While H2A.Z widens the barrier, uH2B heightens it, and both modifications greatly lengthen Pol II crossing time. Using the dwell times of Pol II at each nucleosomal position we extract the energetics of the barrier. The orthogonal barrier modifications of H2A.Z and uH2B, and their effects on Pol II dynamics rationalize their observed enrichment in +1 nucleosomes and suggest a mechanism for selective control of gene expression.


Assuntos
Epigênese Genética , Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Histonas/metabolismo , Xenopus
19.
Methods ; 159-160: 115-123, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797033

RESUMO

Dramatic increases in the scale of programmed synthesis of nucleic acid libraries coupled with deep sequencing have powered advances in understanding nucleic acid and protein biology. Biological systems centering on nucleic acids or encoded proteins greatly benefit from such high-throughput studies, given that large DNA variant pools can be synthesized and DNA, or RNA products of transcription, can be easily analyzed by deep sequencing. Here we review the scope of various high-throughput functional assays for studies of nucleic acids and proteins in general, followed by discussion of how these types of study have yielded insights into the RNA Polymerase II (Pol II) active site as an example. We discuss methodological considerations in the design and execution of these experiments that should be valuable to studies in any system.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Polimerase II/metabolismo , Transcrição Gênica , Eucariotos/genética , Eucariotos/metabolismo
20.
G3 (Bethesda) ; 9(1): 239-250, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30463882

RESUMO

The question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.


Assuntos
RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Tamanho Celular , RNA Polimerases Dirigidas por DNA/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...