Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662826

RESUMO

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Assuntos
Axonema , Centríolos , Cílios , Transtornos da Motilidade Ciliar , Tubulina (Proteína) , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Feminino , Camundongos Knockout
2.
EMBO Mol Med ; 15(8): e16090, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37431816

RESUMO

Gerber et al report 2 autosomal recessive pathogenic Misato homolog 1 (MSTO1) variants causing hereditary optic atrophy and raise concerns about a previously identified dominant variant of MSTO1 by Gal et al (2017).


Assuntos
Proteínas de Ciclo Celular , Atrofias Ópticas Hereditárias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Mutação
3.
Brain ; 146(8): 3156-3161, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071596

RESUMO

Leber hereditary optic neuropathy (LHON) is a primary inherited neurodegenerative disorder of the optic nerve. It has been ascribed to variants in the mitochondrial genome, mainly the m.3460G>A, m.11778G>A and m.14484T>C mutations in ND1, ND4 and ND6, respectively. Nonetheless, inconclusive molecular diagnosis is not uncommon. Recently, biallelic mutations in the NDUFS2, DNAJC30, MCAT and NDUFA12 nuclear genes have been identified in unresolved LHON cases, identifying an autosomal recessive LHON (arLHON, OMIM:619382). The clinical presentation of arLHON copies that of typical LHON due to mtDNA mutations (mtLHON), with an acute phase of sudden and severe vision loss, telangiectatic and tortuous vessels around the optic nerve and swelling of the retinal nerve fibre layer. This is followed by a chronic phase of retinal nerve fibre layer loss, but eventually affected individuals recover partial or full visual acuity. Idebenone treatment significantly improved vision recovery in DNAJC30-associated patients. As for mtLHON, arLHON predominantly affected male compared with female carriers. The discovery of arLHON cases breaks with the dogma of exclusive maternal inheritance. It defines a new neuro-ophthalmo-genetic paradigm, which should be considered in individuals manifesting a LHON phenotype but with an inconclusive molecular diagnosis. NDUFS2, DNAJC30, MCAT and NDUFA12 should be investigated in these individuals, knowing that other arLHON genes might exist.


Assuntos
Atrofia Óptica Hereditária de Leber , Masculino , Feminino , Humanos , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial , Mutação/genética , Nervo Óptico , Retina , NADPH Desidrogenase/genética
4.
Clin Genet ; 101(5-6): 494-506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170016

RESUMO

Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some copy number variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development.


Assuntos
Opacidade da Córnea , Anormalidades do Olho , Segmento Anterior do Olho/anormalidades , Hibridização Genômica Comparativa , Opacidade da Córnea/diagnóstico , Opacidade da Córnea/genética , Opacidade da Córnea/patologia , Variações do Número de Cópias de DNA/genética , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Humanos , Mutação/genética , Fatores de Transcrição SOXB1/genética
5.
Genes (Basel) ; 12(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918393

RESUMO

Pathological variants in the nuclear malonyl-CoA-acyl carrier protein transacylase (MCAT) gene, which encodes a mitochondrial protein involved in fatty-acid biogenesis, have been reported in two siblings from China affected by insidious optic nerve degeneration in childhood, leading to blindness in the first decade of life. After analysing 51 families with negative molecular diagnostic tests, from a cohort of 200 families with hereditary optic neuropathy (HON), we identified two novel MCAT mutations in a female patient who presented with acute, sudden, bilateral, yet asymmetric, central visual loss at the age of 20. This presentation is consistent with a Leber hereditary optic neuropathy (LHON)-like phenotype, whose existence and association with NDUFS2 and DNAJC30 has only recently been described. Our findings reveal a wider phenotypic presentation of MCAT mutations, and a greater genetic heterogeneity of nuclear LHON-like phenotypes. Although MCAT pathological variants are very uncommon, this gene should be investigated in HON patients, irrespective of disease presentation.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Análise de Sequência de DNA/métodos , Proteína de Transporte de Acila S-Maloniltransferase/química , Feminino , França , Humanos , Modelos Moleculares , Linhagem , Conformação Proteica , Adulto Jovem
6.
Genes (Basel) ; 12(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670832

RESUMO

Leber congenital amaurosis (LCA) encompasses the earliest and most severe retinal dystrophies and can occur as a non-syndromic or a syndromic disease. Molecular diagnosis in LCA is of particular importance in clinical decision-making and patient care since it can provide ocular and extraocular prognostics and identify patients eligible to develop gene-specific therapies. Routine high-throughput molecular testing in LCA yields 70%-80% of genetic diagnosis. In this study, we aimed to investigate the non-coding regions of one non-syndromic LCA gene, RPGRIP1, in a series of six families displaying one single disease allele after a gene-panel screening of 722 LCA families which identified 26 biallelic RPGRIP1 families. Using trio-based high-throughput whole locus sequencing (WLS) for second disease alleles, we identified a founder deep intronic mutation (NM_020366.3:c.1468-128T>G) in 3/6 families. We employed Sanger sequencing to search for the pathologic variant in unresolved LCA cases (106/722) and identified three additional families (two homozygous and one compound heterozygous with the NM_020366.3:c.930+77A>G deep intronic change). This makes the c.1468-128T>G the most frequent RPGRIP1 disease allele (8/60, 13%) in our cohort. Studying patient lymphoblasts, we show that the pathologic variant creates a donor splice-site and leads to the insertion of the pseudo-exon in the mRNA, which we were able to hamper using splice-switching antisense oligonucleotides (AONs), paving the way to therapies.


Assuntos
Proteínas do Citoesqueleto/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Amaurose Congênita de Leber/genética , Distrofias Retinianas/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Éxons , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Íntrons/genética , Amaurose Congênita de Leber/patologia , Masculino , Mutação/genética , Patologia Molecular , Linhagem , Distrofias Retinianas/patologia , Adulto Jovem
7.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465056

RESUMO

Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP40/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Adolescente , Adulto , Linhagem Celular , Pré-Escolar , Complexo I de Transporte de Elétrons/química , Feminino , Técnicas de Inativação de Genes , Genes Recessivos , Proteínas de Choque Térmico HSP40/deficiência , Proteínas de Choque Térmico HSP40/metabolismo , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Fenótipo , Subunidades Proteicas , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
8.
Eur J Hum Genet ; 29(1): 131-140, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32737437

RESUMO

Defects in optic fissure closure can lead to congenital ocular coloboma. This ocular malformation, often associated with microphthalmia, is described in various clinical forms with different inheritance patterns and genetic heterogeneity. In recent times, the identification of an increased number of genes involved in numerous cellular functions has led to a better understanding in optic fissure closure mechanisms. Nevertheless, most of these genes are also involved in wider eye growth defects such as micro-anophthalmia, questioning the mechanisms controlling both extension and severity of optic fissure closure defects. However, some genes, such as FZD5, have only been so far identified in isolated coloboma. Thus, to estimate the frequency of implication of different ocular genes, we screened a cohort of 50 patients affected by ocular coloboma by using targeted sequencing of 119 genes involved in ocular development. This analysis revealed seven heterozygous (likely) pathogenic variants in RARB, MAB21L2, RBP4, TFAP2A, and FZD5. Surprisingly, three out of the seven variants detected herein were novel disease-causing variants in FZD5 identified in three unrelated families with dominant inheritance. Although molecular diagnosis rate remains relatively low in patients with ocular coloboma (14% (7/50) in this work), these results, however, highlight the importance of genetic screening, especially of FZD5, in such patients. Indeed, in our series, FZD5 variants represent half of the genetic causes, constituting 6% (3/50) of the patients who benefited from a molecular diagnosis. Our findings support the involvement of FZD5 in ocular coloboma and provide clues for screening this gene during current diagnostic procedures.


Assuntos
Coloboma/genética , Receptores Frizzled/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Coloboma/patologia , Proteínas do Olho/genética , Frequência do Gene , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Receptores do Ácido Retinoico/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Fator de Transcrição AP-2/genética
9.
Genet Med ; 23(3): 479-487, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33100333

RESUMO

PURPOSE: Albinism is a clinically and genetically heterogeneous condition. Despite analysis of the 20 known genes, ~30% patients remain unsolved. We aimed to identify new genes involved in albinism. METHODS: We sequenced a panel of genes with known or predicted involvement in melanogenesis in 230 unsolved albinism patients. RESULTS: We identified variants in the Dopachrome tautomerase (DCT) gene in two patients. One was compound heterozygous for a 14-bp deletion in exon 9 and c.118T>A p.(Cys40Ser). The second was homozygous for c.183C>G p.(Cys61Trp). Both patients had mild hair and skin hypopigmentation, and classical ocular features. CRISPR-Cas9 was used in C57BL/6J mice to create mutations identical to the missense variants carried by the patients, along with one loss-of-function indel. When bred to homozygosity the three mutations revealed hypopigmentation of the coat, milder for Cys40Ser compared with Cys61Trp or the frameshift mutation. Histological analysis identified significant hypopigmentation of the retinal pigmented epithelium (RPE) indicating that defective RPE melanogenesis could be associated with eye and vision defects. DCT loss of function in zebrafish embryos elicited hypopigmentation both in melanophores and RPE cells. CONCLUSION: DCT is the gene for a new type of oculocutaneous albinism that we propose to name OCA8.


Assuntos
Albinismo Oculocutâneo , Peixe-Zebra , Albinismo Oculocutâneo/genética , Animais , Humanos , Oxirredutases Intramoleculares , Camundongos , Camundongos Endogâmicos C57BL , Mutação
11.
Eur J Med Genet ; 63(11): 104033, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781272

RESUMO

We describe two sporadic and two familial cases with loss-of-function variants in PRPS1, which is located on the X chromosome and encodes phosphoribosyl pyrophosphate synthetase 1 (PRS-1). We illustrate the clinical variability associated with decreased PRS-1 activity, ranging from mild isolated hearing loss to severe encephalopathy. One of the variants we identified has already been reported with a phenotype similar to our patient's, whereas the other three were unknown. The clinical and biochemical information we provide will hopefully contribute to gain insight into the correlation between genotype and phenotype of this rare condition, both in females and in males. Moreover, our observation of a new family in which hemizygous males display hearing loss without any neurological or ophthalmological symptoms prompts us to suggest analysing PRPS1 in cases of isolated hearing loss. Eventually, PRPS1 variants should be considered as a differential diagnosis of mitochondrial disorders.


Assuntos
Ataxia/genética , Surdocegueira/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Fenótipo , Ribose-Fosfato Pirofosfoquinase/genética , Ataxia/patologia , Criança , Surdocegueira/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Linhagem
12.
Am J Hum Genet ; 106(6): 859-871, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32470375

RESUMO

Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.


Assuntos
Oftalmopatias Hereditárias/genética , Proteínas de Ligação ao GTP/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação com Perda de Função , Miopia/genética , Proteínas do Tecido Nervoso/genética , Cegueira Noturna/genética , Adulto , Alelos , Processamento Alternativo , Encéfalo/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Diagnóstico Diferencial , Saúde da Família , Feminino , França , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Glucose/metabolismo , Humanos , Secreção de Insulina , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/metabolismo , Linhagem , Retina/metabolismo , Arábia Saudita , Senegal
14.
Adv Exp Med Biol ; 1185: 189-195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884610

RESUMO

CEP290 mutations cause a spectrum of ciliopathies, including Leber congenital amaurosis. Milder retinal diseases have been ascribed to exclusion of CEP290 mutant exons through basal exon skipping (BES) and/or nonsense-associated altered splicing (NAS). Here, we report two siblings with some preserved vision despite biallelism for presumably severe CEP290 mutations: a maternal splice site change in intron 18 (c.1824 + 3A > G) and a paternal c.6869dup (p.Asn2290Lysfs∗6) in exon 50 that introduces a premature termination codon (PTC) within the same exon. Analyzing mRNAs from fibroblasts of the two siblings, we detected no BES or NAS which could have enabled the production of PTC-free CEP290 isoforms from the paternal allele. In contrast, we reveal partial alteration of exon 18 donor splice site, allowing the transcription of some correctly spliced CEP290 mRNAs from the maternal allele which likely account for the mild retinal disease. This observation adds further variability to the mechanisms underlying CEP290 pleiotropy.


Assuntos
Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Códon sem Sentido , Proteínas do Citoesqueleto/genética , Éxons , Splicing de RNA , Doenças Retinianas/genética , Humanos , Mutação , Irmãos
15.
Adv Exp Med Biol ; 1185: 233-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884617

RESUMO

The specific association of Leber congenital amaurosis (LCA) or early-onset severe retinal dystrophy (LCA-like) with sensorineural hearing loss (SHL) is uncommon. Recently, we ascribed some of these distinctive associations to dominant and de novo mutations in the ß-tubulin 4B isotype-encoding gene (TUBB4B), providing a link between a sensorineural disease and anomalies in microtubules behavior. Here, we report 12 sporadic cases with LCA/SHL or LCA-like/SHL and no TUBB4B mutation. Trio-based whole exome sequencing (WES) identified disease-causing mutations in 5/12 cases. Four out of five carried biallelic mutations in PEX1 (1/4) or PEX6 (3/4), involved in peroxisome biogenesis disorders from Zellweger syndrome characterized by severe neurologic and neurosensory dysfunctions, craniofacial abnormalities, and liver dysfunction to Heimler syndrome associating SHL, enamel hypoplasia of the secondary dentition, nail abnormalities, and occasional retinal disease. Upon reexamination, the index case carrying PEX1 mutations, a 4-year-old girl, presented additional symptoms consistent with Zellweger syndrome. Reexamination of individuals with PEX6 mutations (1/3 unavailable) revealed normal nails but enamel hypoplasia affecting one primary teeth in a 4-year-old girl and severe enamel hypoplasia of primary teeth hidden by dental prosthesis in a 50-year-old male, describing a novel PEX6-associated disease of the Zellweger/Heimler spectrum. Finally, hemizygosity for a CACNA1F mutation was identified in an 18-year-old male addressed for LCA/SHL, redirecting the retinal diagnosis to congenital stationary night blindness (CSNB2A). Consistent with the pure CSNB2A retinal involvement, SHL was ascribed to biallelic mutations in another gene, STRC, involved in nonprogressive DFNB16 deafness.


Assuntos
Perda Auditiva Neurossensorial/genética , Amaurose Congênita de Leber/genética , Distrofias Retinianas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Adolescente , Canais de Cálcio Tipo L/genética , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Unhas Malformadas , Linhagem
16.
Genes (Basel) ; 10(5)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091803

RESUMO

Mutations in CEP290 encoding a centrosomal protein important to cilia formation cause a spectrum of diseases, from isolated retinal dystrophies to multivisceral and sometimes embryo-lethal ciliopathies. In recent years, endogenous and/or selective non-canonical exon skipping of mutant exons have been documented in attenuated retinal disease cases. This observation led us to consider targeted exon skipping to bypass protein truncation resulting from a recurrent mutation in exon 36 (c.4723A > T, p.Lys1575*) causing isolated retinal ciliopathy. Here, we report two unrelated individuals (P1 and P2), carrying the mutation in homozygosity but affected with early-onset severe retinal dystrophy and congenital blindness, respectively. Studying skin-derived fibroblasts, we observed basal skipping and nonsense associated-altered splicing of exon 36, producing low (P1) and very low (P2) levels of CEP290 products. Consistent with a more severe disease, fibroblasts from P2 exhibited reduced ciliation compared to P1 cells displaying normally abundant cilia; both lines presented however significantly elongated cilia, suggesting altered axonemal trafficking. Antisense oligonucleotides (AONs)-mediated skipping of exon 36 increased the abundance of the premature termination codon (PTC)-free mRNA and protein, reduced axonemal length and improved cilia formation in P2 but not in P1 expressing higher levels of skipped mRNA, questioning AON-mediated exon skipping to treat patients carrying the recurrent c.4723A > T mutation.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Distrofias Retinianas/genética , Códon sem Sentido , Éxons/genética , Anormalidades do Olho/genética , Oftalmopatias Hereditárias/genética , Humanos , Masculino , Proteínas de Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Splicing de RNA , Retina/metabolismo , Distrofias Retinianas/fisiopatologia
17.
Retin Cases Brief Rep ; 13(4): 295-299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28541266

RESUMO

PURPOSE: To describe the phenotype and genotype of a 10-year-old boy affected with enhanced S-cone syndrome associated with neovascularization. METHODS: Fundus autofluorescence, fluorescein angiography, indocyanine green angiography, spectral domain optical coherence tomography, full-field electroretinogram and NR2E3 molecular testing were performed. RESULTS: Best-corrected visual acuity was measured as 20/32, right eye and 20/20, left eye. Fluorescein and indocyanine green angiographies showed unilateral macular retinochoroidal anastomosis on his right eye, and spectral domain optical coherence tomography showed typical signs of subretinal exudation and foveolar pseudoschisis consistent with the diagnosis of enhanced S-cone syndrome. Genetic analysis revealed biparental transmission of mutations in the enhanced S-cone syndrome-causing gene, NR2E3, namely, c.194_202del (p.Asn65_Cys67del), and c.932 G>A (p.Arg311Gln), supporting an autosomal recessive inheritance. The patient received three intravitreal injections of anti-VEGF agents. CONCLUSION: Evidence of retinochoroidal anastomosis in an individual affected with enhanced S-cone syndrome supports the view that neovascularization can occur early in the course of the disease, and raises the question to know whether it might be responsible for previously described enhanced S-cone syndrome-associated hemorrhage-induced fibrosis.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/etiologia , Oftalmopatias Hereditárias/complicações , Degeneração Retiniana/complicações , Neovascularização Retiniana/etiologia , Vasos Retinianos/patologia , Transtornos da Visão/complicações , Acuidade Visual , Criança , Neovascularização de Coroide/diagnóstico , Eletrorretinografia , Oftalmopatias Hereditárias/diagnóstico , Angiofluoresceinografia/métodos , Fundo de Olho , Humanos , Masculino , Degeneração Retiniana/diagnóstico , Neovascularização Retiniana/diagnóstico , Tomografia de Coerência Óptica/métodos , Transtornos da Visão/diagnóstico
18.
Hum Mol Genet ; 27(15): 2689-2702, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771326

RESUMO

CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base pair deletion in Exon 17, introducing a premature termination codon (PTC) in Exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of Exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in Exon 8 (c.508A>T, p.Lys170*) and Exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking Exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of Exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing alone (Exon 8), or with BES (Exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Doenças Retinianas/genética , Adolescente , Adulto , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Criança , Cílios/fisiologia , Códon sem Sentido , Códon de Terminação , Proteínas do Citoesqueleto , Éxons , Proteínas do Olho/metabolismo , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Mutação , Transporte Proteico , Splicing de RNA , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Proteínas Supressoras de Tumor/metabolismo
20.
Birth Defects Res ; 110(7): 598-602, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29356416

RESUMO

BACKGROUND: The RTTN gene encodes Rotatin, a large centrosomal protein involved in ciliary functions. RTTN mutations have been reported in seven families and are associated with two phenotypes: polymicrogyria associated with seizures and primary microcephaly associated with primordial dwarfism. CASE: A targeted exome sequencing of morbid genes causing cerebral malformations identified novel RTTN compound heterozygous mutations in a family where three pregnancies were terminated because a severe fetal microcephaly was diagnosed. An autopsy performed on the second sib showed moderate growth restriction and a microcephaly with simplified gyral pattern. The histopathological study discovered a malformed cortical plate. CONCLUSIONS: The present study confirms the involvement of RTTN gene mutations in microcephaly with simplified gyral pattern and describes the observed abnormal neuropathological findings.


Assuntos
Encéfalo/patologia , Proteínas de Transporte/genética , Microcefalia/genética , Mutação , Proteínas de Ciclo Celular , Humanos , Microcefalia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...