Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422184

RESUMO

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Assuntos
Elementos Facilitadores Genéticos , Eutérios , Evolução Molecular , Regulação da Expressão Gênica , Córtex Motor , Neurônios Motores , Proteínas , Vocalização Animal , Animais , Quirópteros/genética , Quirópteros/fisiologia , Vocalização Animal/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Cromatina/metabolismo , Neurônios Motores/fisiologia , Laringe/fisiologia , Epigênese Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Eutérios/genética , Eutérios/fisiologia , Aprendizado de Máquina
2.
Science ; 380(6643): eabn3943, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104599

RESUMO

Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.


Assuntos
Eutérios , Evolução Molecular , Animais , Feminino , Humanos , Sequência Conservada/genética , Eutérios/genética , Genoma Humano
3.
Science ; 380(6643): eabm7993, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104615

RESUMO

Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.


Assuntos
Elementos Facilitadores Genéticos , Variação Genética , Aprendizado de Máquina , Mamíferos , Animais , Mamíferos/genética , Fenótipo
4.
Elife ; 112022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35576146

RESUMO

Recent discoveries of extreme cellular diversity in the brain warrant rapid development of technologies to access specific cell populations within heterogeneous tissue. Available approaches for engineering-targeted technologies for new neuron subtypes are low yield, involving intensive transgenic strain or virus screening. Here, we present Specific Nuclear-Anchored Independent Labeling (SNAIL), an improved virus-based strategy for cell labeling and nuclear isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other computational approaches to identify DNA sequence features that confer cell type-specific gene activation and then make a probe that drives an affinity purification-compatible reporter gene. As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-expressing (PV+) neurons. Nuclear isolation using SNAIL in wild-type mice is sufficient to capture characteristic open chromatin features of PV+ neurons in the cortex, striatum, and external globus pallidus. The SNAIL framework also has high utility for multispecies cell probe engineering; expression from a mouse PV+ SNAIL enhancer sequence was enriched in PV+ neurons of the macaque cortex. Expansion of this technology has broad applications in cell type-specific observation, manipulation, and therapeutics across species and disease models.


Assuntos
Elementos Facilitadores Genéticos , Aprendizado de Máquina , Neurônios , Análise de Sequência de DNA , Animais , Córtex Cerebral/metabolismo , Biologia Computacional/métodos , Elementos Facilitadores Genéticos/genética , Globo Pálido , Camundongos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Análise de Sequência de DNA/métodos
5.
BMC Genomics ; 23(1): 295, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410161

RESUMO

BACKGROUND: Many transcription factors (TFs), such as multi zinc-finger (ZF) TFs, have multiple DNA binding domains (DBDs), and deciphering the DNA binding motifs of individual DBDs is a major challenge. One example of such a TF is CCCTC-binding factor (CTCF), a TF with eleven ZFs that plays a variety of roles in transcriptional regulation, most notably anchoring DNA loops. Previous studies found that CTCF ZFs 3-7 bind CTCF's core motif and ZFs 9-11 bind a specific upstream motif, but the motifs of ZFs 1-2 have yet to be identified. RESULTS: We developed a new approach to identifying the binding motifs of individual DBDs of a TF through analyzing chromatin immunoprecipitation sequencing (ChIP-seq) experiments in which a single DBD is mutated: we train a deep convolutional neural network to predict whether wild-type TF binding sites are preserved in the mutant TF dataset and interpret the model. We applied this approach to mouse CTCF ChIP-seq data and identified the known binding preferences of CTCF ZFs 3-11 as well as a putative GAG binding motif for ZF 1. We analyzed other CTCF datasets to provide additional evidence that ZF 1 is associated with binding at the motif we identified, and we found that the presence of the motif for ZF 1 is associated with CTCF ChIP-seq peak strength. CONCLUSIONS: Our approach can be applied to any TF for which in vivo binding data from both the wild-type and mutated versions of the TF are available, and our findings provide new potential insights binding preferences of CTCF's DBDs.


Assuntos
Fatores de Transcrição , Zinco , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , DNA/metabolismo , Camundongos , Redes Neurais de Computação , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Dedos de Zinco/genética
6.
BMC Genomics ; 23(1): 291, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410163

RESUMO

BACKGROUND: Evolutionary conservation is an invaluable tool for inferring functional significance in the genome, including regions that are crucial across many species and those that have undergone convergent evolution. Computational methods to test for sequence conservation are dominated by algorithms that examine the ability of one or more nucleotides to align across large evolutionary distances. While these nucleotide alignment-based approaches have proven powerful for protein-coding genes and some non-coding elements, they fail to capture conservation of many enhancers, distal regulatory elements that control spatial and temporal patterns of gene expression. The function of enhancers is governed by a complex, often tissue- and cell type-specific code that links combinations of transcription factor binding sites and other regulation-related sequence patterns to regulatory activity. Thus, function of orthologous enhancer regions can be conserved across large evolutionary distances, even when nucleotide turnover is high. RESULTS: We present a new machine learning-based approach for evaluating enhancer conservation that leverages the combinatorial sequence code of enhancer activity rather than relying on the alignment of individual nucleotides. We first train a convolutional neural network model that can predict tissue-specific open chromatin, a proxy for enhancer activity, across mammals. Next, we apply that model to distinguish instances where the genome sequence would predict conserved function versus a loss of regulatory activity in that tissue. We present criteria for systematically evaluating model performance for this task and use them to demonstrate that our models accurately predict tissue-specific conservation and divergence in open chromatin between primate and rodent species, vastly out-performing leading nucleotide alignment-based approaches. We then apply our models to predict open chromatin at orthologs of brain and liver open chromatin regions across hundreds of mammals and find that brain enhancers associated with neuron activity have a stronger tendency than the general population to have predicted lineage-specific open chromatin. CONCLUSION: The framework presented here provides a mechanism to annotate tissue-specific regulatory function across hundreds of genomes and to study enhancer evolution using predicted regulatory differences rather than nucleotide-level conservation measurements.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Animais , Cromatina/genética , Humanos , Mamíferos/genética , Redes Neurais de Computação , Nucleotídeos
7.
Science ; 374(6564): 201-206, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618556

RESUMO

Symptoms of neurological diseases emerge through the dysfunction of neural circuits whose diffuse and intertwined architectures pose serious challenges for delivering therapies. Deep brain stimulation (DBS) improves Parkinson's disease symptoms acutely but does not differentiate between neuronal circuits, and its effects decay rapidly if stimulation is discontinued. Recent findings suggest that optogenetic manipulation of distinct neuronal subpopulations in the external globus pallidus (GPe) provides long-lasting therapeutic effects in dopamine-depleted (DD) mice. We used synaptic differences to excite parvalbumin-expressing GPe neurons and inhibit lim-homeobox-6­expressing GPe neurons simultaneously using brief bursts of electrical stimulation. In DD mice, circuit-inspired DBS provided long-lasting therapeutic benefits that far exceeded those induced by conventional DBS, extending several hours after stimulation. These results establish the feasibility of transforming knowledge of circuit architecture into translatable therapeutic approaches.


Assuntos
Estimulação Encefálica Profunda/métodos , Dopamina/deficiência , Globo Pálido/fisiopatologia , Neurônios/fisiologia , Doença de Parkinson/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Modelos Animais de Doenças , Dopamina/genética , Feminino , Globo Pálido/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiopatologia , Sinapses/fisiologia
8.
J Neurosci ; 41(43): 9008-9030, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34462306

RESUMO

Recent large genome-wide association studies have identified multiple confident risk loci linked to addiction-associated behavioral traits. Most genetic variants linked to addiction-associated traits lie in noncoding regions of the genome, likely disrupting cis-regulatory element (CRE) function. CREs tend to be highly cell type-specific and may contribute to the functional development of the neural circuits underlying addiction. Yet, a systematic approach for predicting the impact of risk variants on the CREs of specific cell populations is lacking. To dissect the cell types and brain regions underlying addiction-associated traits, we applied stratified linkage disequilibrium score regression to compare genome-wide association studies to genomic regions collected from human and mouse assays for open chromatin, which is associated with CRE activity. We found enrichment of addiction-associated variants in putative CREs marked by open chromatin in neuronal (NeuN+) nuclei collected from multiple prefrontal cortical areas and striatal regions known to play major roles in reward and addiction. To further dissect the cell type-specific basis of addiction-associated traits, we also identified enrichments in human orthologs of open chromatin regions of female and male mouse neuronal subtypes: cortical excitatory, D1, D2, and PV. Last, we developed machine learning models to predict mouse cell type-specific open chromatin, enabling us to further categorize human NeuN+ open chromatin regions into cortical excitatory or striatal D1 and D2 neurons and predict the functional impact of addiction-associated genetic variants. Our results suggest that different neuronal subtypes within the reward system play distinct roles in the variety of traits that contribute to addiction.SIGNIFICANCE STATEMENT We combine statistical genetic and machine learning techniques to find that the predisposition to for nicotine, alcohol, and cannabis use behaviors can be partially explained by genetic variants in conserved regulatory elements within specific brain regions and neuronal subtypes of the reward system. Our computational framework can flexibly integrate open chromatin data across species to screen for putative causal variants in a cell type- and tissue-specific manner for numerous complex traits.


Assuntos
Comportamento Aditivo/genética , Encéfalo/fisiologia , Predisposição Genética para Doença/genética , Variação Genética/fisiologia , Neurônios/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Animais , Comportamento Aditivo/patologia , Encéfalo/patologia , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Locos de Características Quantitativas/genética
9.
Bioinformatics ; 36(15): 4339-4340, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407523

RESUMO

SUMMARY: Diverse traits have evolved through cis-regulatory changes in genome sequence that influence the magnitude, timing and cell type-specificity of gene expression. Advances in high-throughput sequencing and regulatory genomics have led to the identification of regulatory elements in individual species, but these genomic regions remain difficult to align across taxonomic orders due to their lack of sequence conservation relative to protein coding genes. The groundwork for tracing the evolution of regulatory elements is provided by the recent assembly of hundreds of genomes, the generation of reference-free Cactus multiple sequence alignments of these genomes, and the development of the halLiftover tool for mapping regions across these alignments. We present halLiftover Post-processing for the Evolution of Regulatory Elements (HALPER), a tool for constructing contiguous regulatory element orthologs from the outputs of halLiftover. We anticipate that this tool will enable users to efficiently identify orthologs of regulatory elements across hundreds of species, providing novel insights into the evolution of traits that have evolved through gene expression. AVAILABILITY AND IMPLEMENTATION: HALPER is implemented in python and available on github: https://github.com/pfenninglab/halLiftover-postprocessing. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Genoma , Sequências Reguladoras de Ácido Nucleico/genética , Alinhamento de Sequência
10.
Nat Commun ; 10(1): 4063, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492858

RESUMO

Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements.


Assuntos
Sistemas CRISPR-Cas , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , RNA Guia de Cinetoplastídeos/genética , Elementos Reguladores de Transcrição/genética , Biologia Computacional/métodos , Epigênese Genética/genética , Epigenômica/métodos , Edição de Genes/métodos , Células HEK293 , Humanos , Células K562
11.
Genome Res ; 25(6): 907-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25910490

RESUMO

DNA methylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many individuals is sequenced together in a single pool, resulting in a truly genome-wide map of DNA methylation. Compared to methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000 genetic variants associated with DNA methylation. We found that these variants are highly enriched for associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA, such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any species, without the need for individual-level genotype or methylation data.


Assuntos
Mapeamento Cromossômico , Metilação de DNA , Polimorfismo de Nucleotídeo Único , Alelos , Linhagem Celular , Biologia Computacional , Simulação por Computador , Bases de Dados Genéticas , Epigênese Genética , Regulação da Expressão Gênica , Biblioteca Gênica , Estudos de Associação Genética , Genoma Humano , Genótipo , Humanos , Fenótipo , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Análise de Sequência de DNA
13.
Bioinformatics ; 25(12): i21-9, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19477990

RESUMO

MOTIVATION: Genome-wide association studies are commonly used to identify possible associations between genetic variations and diseases. These studies mainly focus on identifying individual single nucleotide polymorphisms (SNPs) potentially linked with one disease of interest. In this work, we introduce a novel methodology that identifies similarities between diseases using information from a large number of SNPs. We separate the diseases for which we have individual genotype data into one reference disease and several query diseases. We train a classifier that distinguishes between individuals that have the reference disease and a set of control individuals. This classifier is then used to classify the individuals that have the query diseases. We can then rank query diseases according to the average classification of the individuals in each disease set, and identify which of the query diseases are more similar to the reference disease. We repeat these classification and comparison steps so that each disease is used once as reference disease. RESULTS: We apply this approach using a decision tree classifier to the genotype data of seven common diseases and two shared control sets provided by the Wellcome Trust Case Control Consortium. We show that this approach identifies the known genetic similarity between type 1 diabetes and rheumatoid arthritis, and identifies a new putative similarity between bipolar disease and hypertension.


Assuntos
Artrite Reumatoide/genética , Biologia Computacional/métodos , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença/genética , Artrite Reumatoide/classificação , Diabetes Mellitus Tipo 1/classificação , Perfilação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...