Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(3): 4426-4443, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35103463

RESUMO

The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Adjuvantes Imunológicos , Animais , Antígenos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Nanogéis , Neoplasias/terapia , Ovalbumina , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
2.
ACS Nano ; 15(9): 15191-15209, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34431291

RESUMO

Despite considerable progress in the design of multifunctionalized nanoparticles (NPs) that selectively target specific cell types, their systemic application often results in unwanted liver accumulation. The exact mechanisms for this general observation are still unclear. Here we asked whether the number of cell-targeting antibodies per NP determines the extent of NP liver accumulation and also addressed the mechanisms by which antibody-coated NPs are retained in the liver. We used polysarcosine-based peptobrushes (PBs), which in an unmodified form remain in the circulation for >24 h due to the absence of a protein corona formation and low unspecific cell binding, and conjugated them with specific average numbers (2, 6, and 12) of antibodies specific for the dendritic cell (DC) surface receptor, DEC205. We assessed the time-dependent biodistribution of PB-antibody conjugates by in vivo imaging and flow cytometry. We observed that PB-antibody conjugates were trapped in the liver and that the extent of liver accumulation strongly increased with the number of attached antibodies. PB-antibody conjugates were selectively captured in the liver via Fc receptors (FcR) on liver sinusoidal endothelial cells, since systemic administration of FcR-blocking agents or the use of F(ab')2 fragments prevented liver accumulation. Cumulatively, our study demonstrates that liver endothelial cells play a yet scarcely acknowledged role in liver entrapment of antibody-coated NPs and that low antibody numbers on NPs and the use of F(ab')2 antibody fragments are both sufficient for cell type-specific targeting of secondary lymphoid organs and necessary to minimize unwanted liver accumulation.


Assuntos
Nanopartículas , Receptores Fc , Células Endoteliais , Fígado , Distribuição Tecidual
3.
Cells ; 9(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872352

RESUMO

In the last decades, the use of nanocarriers for immunotherapeutic purposes has gained a lot of attention, especially in the field of tumor therapy. However, most types of nanocarriers accumulate strongly in the liver after systemic application. Due to the default tolerance-promoting role of liver non-parenchymal cells (NPCs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs), their potential role on the immunological outcome of systemic nano-vaccination approaches for therapy of tumors in the liver and in other organs needs to be considered. Concerning immunological functions, KCs have been the focus until now, but recent studies have elucidated an important role of LSECs and HSCs as well. Therefore, this review aims to summarize current knowledge on the employment of nanocarriers for immunotherapeutic therapy of liver diseases and the overall role of liver NPCs in the context of nano-vaccination approaches. With regard to the latter, we discuss strategies on how to address liver NPCs, aiming to exploit and modulate their immunological properties, and alternatively how to avoid unwanted engagement of nano-vaccines by liver NPCs for tumor therapy.


Assuntos
Carcinoma Hepatocelular/genética , Células Endoteliais/metabolismo , Tolerância Imunológica/genética , Imunoterapia/métodos , Neoplasias Hepáticas/genética , Fígado/patologia , Nanopartículas/metabolismo , Humanos , Fatores de Risco
4.
J Allergy Clin Immunol ; 142(5): 1558-1570, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29382591

RESUMO

BACKGROUND: Nanoparticle (NP)-based vaccines are attractive immunotherapy tools because of their capability to codeliver antigen and adjuvant to antigen-presenting cells. Their cellular distribution and serum protein interaction ("protein corona") after systemic administration and their effect on the functional properties of NPs is poorly understood. OBJECTIVES: We analyzed the relevance of the protein corona on cell type-selective uptake of dextran-coated NPs and determined the outcome of vaccination with NPs that codeliver antigen and adjuvant in disease models of allergy. METHODS: The role of protein corona constituents for cellular binding/uptake of dextran-coated ferrous nanoparticles (DEX-NPs) was analyzed both in vitro and in vivo. DEX-NPs conjugated with the model antigen ovalbumin (OVA) and immunostimulatory CpG-rich oligodeoxynucleotides were administered to monitor the induction of cellular and humoral immune responses. Therapeutic effects of this DEX-NP vaccine in mouse models of OVA-induced anaphylaxis and allergic asthma were assessed. RESULTS: DEX-NPs triggered lectin-induced complement activation, yielding deposition of activated complement factor 3 on the DEX-NP surface. In the spleen DEX-NPs targeted predominantly B cells through complement receptors 1 and 2. The DEX-NP vaccine elicited much stronger OVA-specific IgG2a production than coadministered soluble OVA plus CpG oligodeoxynucleotides. B-cell binding of the DEX-NP vaccine was critical for IgG2a production. Treatment of OVA-sensitized mice with the DEX-NP vaccine prevented induction of anaphylactic shock and allergic asthma accompanied by IgE inhibition. CONCLUSIONS: Opsonization of lectin-coated NPs by activated complement components results in selective B-cell targeting. The intrinsic B-cell targeting property of lectin-coated NPs can be exploited for treatment of allergic immune responses.


Assuntos
Anafilaxia/imunologia , Linfócitos B/imunologia , Hipersensibilidade/imunologia , Nanopartículas/administração & dosagem , Coroa de Proteína/imunologia , Animais , Antígenos/administração & dosagem , Dextranos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Feminino , Compostos Ferrosos/administração & dosagem , Lectinas/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/administração & dosagem , Linfócitos T/imunologia , Vacinas/administração & dosagem
5.
Macromol Biosci ; 17(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759159

RESUMO

In this work, the first vaccine is reported based on a PeptoSome, which contains a model antigen (SIINFEKL) and adjuvant (CpG). PeptoSomes are polypept(o)ide-based polymersomes built of a block-copolymer with polysarcosine (PSar) as the hydrophilic block (X n = 111) and poly(benzyl-glutamic acid) (PGlu(OBn)) as the hydrophobic one (X n = 46). The polypept(o)ide is obtained with low dispersity index of 1.32 by controlled ring-opening polymerization. Vesicle formation by dual centrifugation technique allows for loading of vesicles up to 40 mol%. PeptoSomes are characterized by multiangle dynamic light scattering, static light scattering, and cryogenic transmission electron microscopy (cryoTEM). The PeptoSomes have a hydrodynamic radius of 39.2 nm with a low dispersity (µ 2 = 0.1). The ρ-ratio R g /R h of 0.95 already indicates that vesicles are formed, which can be confirmed by cryoTEM. Loaded PeptoSomes deliver the antigen (SIINFEKL) and an adjuvant (CpG) simultaneously into dendritic cells (DCs). Upon cellular uptake, dendritic cells are stimulated and activated, which leads to expression of cluster of differentiation CD80, CD86, and MHCII, but induces excretion of proinflammatory cytokines (e.g., TNFα). Furthermore, DC-mediated antigen-specific T-cell proliferation is achieved, thus underlining the enormous potential of PeptoSomes as a versatile platform for vaccination.


Assuntos
Adjuvantes Imunológicos/síntese química , Antígenos/química , Células Dendríticas/efeitos dos fármacos , Peptídeos/síntese química , Peptoides/farmacologia , Sarcosina/análogos & derivados , Adjuvantes Imunológicos/química , Antígenos/imunologia , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Técnicas de Cocultura , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Expressão Gênica , Humanos , Ativação Linfocitária/efeitos dos fármacos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/imunologia , Peptídeos/imunologia , Peptídeos/farmacologia , Peptoides/síntese química , Sarcosina/síntese química , Sarcosina/farmacologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinação/métodos , Vacinas/síntese química
6.
Biomacromolecules ; 17(10): 3305-3317, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27673444

RESUMO

Poly(2,3-dihydroxypropyl methacrylamide) (P(DHPMA))-based amphiphilic block copolymers have recently proven to form polymer vesicles (polymersomes). In this work, we further expand their potential by incorporating (i) units for pH-dependent disintegration into the hydrophobic membrane and (ii) mannose as targeting unit into the hydrophilic block. This last step relies on the use of an active ester prepolymer. We confirm the stability of the polymersomes against detergents like Triton X-100 and their low cytotoxicity. The incorporation of 2-(2,2-dimethyl-1,3-dioxolane-4-yl)ethyl methacrylate into the hydrophobic block (lauryl methacrylate) allows a pH-responsive disintegration for cargo release. Efficient decomposition of the polymersome structure is monitored by dynamic light scattering. It is thus possible to include an active enzyme (glucose oxidase), which gets only active (is set free) after vesicle disintegration. In addition, the introduction of mannose as targeting structure allows enhanced and selective targeting of dendritic cells.


Assuntos
Sistemas de Liberação de Medicamentos , Ésteres/química , Metacrilatos/química , Polímeros/química , Dioxolanos/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Metacrilatos/síntese química , Octoxinol/química , Polímeros/síntese química
7.
Nanomedicine (Lond) ; 11(20): 2679-2697, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27628185

RESUMO

BACKGROUND: Successful tumor immunotherapy depends on the induction of strong and sustained tumor antigen-specific immune responses by activated antigen-presenting cells (APCs) such as dendritic cells (DCs). Since nanoparticles have the potential to codeliver tumor-specific antigen and DC-stimulating adjuvant in a DC-targeting manner, we wanted to assess the suitability of mannosylated HPMA-LMA block polymers for immunotherapy. MATERIALS & METHODS: Fluorescence-labeled block copolymer micelles derived from P(HPMA)-block-P(LMA) copolymers and according statistical copolymers were synthesized via RAFT polymerization, and loaded with the APC activator L18-MDP. Both types of copolymers were conjugated with D-mannose to target the mannose receptor as expressed by DCs and macrophages. The extent and specificity of micelle binding and activation of APCs was monitored using mouse spleen cells and bone marrow-derived DC (BMDC). RESULTS: Nontargeting HPMA-LMA statistical copolymers showed strong unspecific cell binding. HPMA-LMA block copolymers bound DC only when conjugated with mannose, and in a mannose receptor-specific manner. Mannosylated HPMA-LMA block copolymers were internalized by DC. DC-targeting HPMA-LMA block copolymers mediated DC activation when loaded with L18-MDP. CONCLUSION: Mannosylated HPMA-LMA block copolymers are a promising candidate for the delvopment of DC-targeting nanovaccines.


Assuntos
Células Dendríticas/metabolismo , Manose/química , Metacrilatos/química , Nanopartículas/química , Acetilmuramil-Alanil-Isoglutamina/análogos & derivados , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Imunoterapia/métodos , Metacrilatos/síntese química , Micelas , Polimerização , Polímeros , Baço/citologia , Baço/imunologia , Baço/metabolismo , Propriedades de Superfície
8.
Chemistry ; 20(39): 12405-10, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25111768

RESUMO

To achieve specific cell targeting by various receptors for oligosaccharides or antibodies, a carrier must not be taken up by any of the very many different cells and needs functional groups prone to clean conjugation chemistry to derive well-defined structures with a high biological specificity. A polymeric nanocarrier is presented that consists of a cylindrical brush polymer with poly-2-oxazoline side chains carrying an azide functional group on each of the many side chain ends. After click conjugation of dye and an anti-DEC205 antibody to the periphery of the cylindrical brush polymer, antibody-mediated specific binding and uptake into DEC205(+) -positive mouse bone marrow-derived dendritic cells (BMDC) was observed, whereas binding and uptake by DEC205(-) negative BMDC and non-DC was essentially absent. Additional conjugation of an antigen peptide yielded a multifunctional polymer structure with a much stronger antigen-specific T-cell stimulatory capacity of pretreated BMDC than application of antigen or polymer-antigen conjugate.


Assuntos
Antígenos CD/imunologia , Células Dendríticas/imunologia , Imunoconjugados/administração & dosagem , Imunoconjugados/imunologia , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Imunoconjugados/química , Ativação Linfocitária , Camundongos , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Ovalbumina/administração & dosagem , Ovalbumina/química , Ovalbumina/imunologia , Oxazóis/química , Oxazóis/imunologia , Polímeros/química , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...