Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113842, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427564

RESUMO

Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.


Assuntos
Núcleos Anteriores do Tálamo , Animais , Camundongos , Núcleos Anteriores do Tálamo/metabolismo , Hibridização in Situ Fluorescente
2.
Cell Rep ; 42(3): 112206, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36881508

RESUMO

The laminae of the neocortex are fundamental processing layers of the mammalian brain. Notably, such laminae are believed to be relatively stereotyped across short spatial scales such that shared laminae between nearby brain regions exhibit similar constituent cells. Here, we consider a potential exception to this rule by studying the retrosplenial cortex (RSC), a brain region known for sharp cytoarchitectonic differences across its granular-dysgranular border. Using a variety of transcriptomics techniques, we identify, spatially map, and interpret the excitatory cell-type landscape of the mouse RSC. In doing so, we uncover that RSC gene expression and cell types change sharply at the granular-dysgranular border. Additionally, supposedly homologous laminae between the RSC and the neocortex are effectively wholly distinct in their cell-type composition. In collection, the RSC exhibits a variety of intrinsic cell-type specializations and embodies an organizational principle wherein cell-type identities can vary sharply within and between brain regions.


Assuntos
Neocórtex , Camundongos , Animais , Giro do Cíngulo/metabolismo , Neurônios , Contagem de Células , Córtex Cerebral , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...