Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3536, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725983

RESUMO

Transparent conducting oxides exhibit giant optical nonlinearities in the near-infrared window where their linear index approaches zero. Despite the magnitude and speed of these nonlinearities, a "killer" optical application for these compounds has yet to be found. Because of the absorptive nature of the typically used intraband transitions, out-of-plane configurations with short optical paths should be considered. In this direction, we propose an alternative frequency-resolved optical gating scheme for the characterization of ultra-fast optical pulses that exploits near-zero-index aluminium zinc oxide thin films. Besides the technological advantages in terms of manufacturability and cost, our system outperforms commercial modules in key metrics, such as operational bandwidth, sensitivity, and robustness. The performance enhancement comes with the additional benefit of simultaneous self-phase-matched second and third harmonic generation. Because of the fundamental importance of novel methodologies to characterise ultra-fast events, our solution could be of fundamental use for numerous research labs and industries.

2.
Nat Commun ; 11(1): 2933, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523065

RESUMO

Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag2S superdots) derived from chemically synthesized Ag2S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag2S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm-2) and doses (<0.5 mg kg-1), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing.


Assuntos
Imagem Óptica/métodos , Fotoquímica/métodos , Corantes Fluorescentes , Nanopartículas/química , Pontos Quânticos
3.
Sci Rep ; 10(1): 5080, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179770

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 9(1): 17058, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745117

RESUMO

We report on an optimized fabrication protocol for obtaining silver nanoparticles on fused silica substrates via laser photoreduction of a silver salt solution. We find that multiple scans of the laser over the surface leads to a more uniform coverage of densely packed silver nanoparticles of approximately 50 nm diameter on the fused silica surface. Our substrates yield Raman enhancement factors of the order of 1011 of the signal detected from crystal violet. We use a theoretical model based on scanning electron microscope (SEM) images of our substrates to explain our experimental results. We also demonstrate how our technique can be extended to embedding silver nanoparticles in buried microfluidic channels in glass. The in situ laser inscription of silver nanoparticles on a laser machined, sub-surface, microfluidic channel wall within bulk glass paves the way for developing 3D, monolithic, fused silica surface enhance Raman spectroscopy (SERS) microfluidic sensing devices.

5.
Opt Express ; 25(21): 26166-26174, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041277

RESUMO

A high repetition rate Q-switched modelocked ~2.1 µm monolithic waveguide laser is reported. Ultrafast laser inscription is used to fabricate 3D depressed cladding channel waveguides in holmium doped yttrium aluminium garnet. This results in a transversely single mode waveguide laser. With the use of a graphene based saturable output coupler, Q-switched modelocking was achieved with a pulse repetition frequency of 5.9 GHz and up to 170 mW of average output power. This first demonstration of multi-GHz repetition rate operation from a Ho3+:YAG laser provides a compact and convenient source for a number of applications.

6.
Appl Opt ; 56(19): 5407-5411, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047497

RESUMO

We demonstrate ultrafast all-optical switching in femtosecond laser inscribed nonlinear directional couplers in gallium lanthanum sulphide operated at 1.55 µm. We report on the evaluation of the nonlinear refractive index of the waveguides forming the directional couplers by making use of the switching parameters. The nonlinear refractive index is reduced by the inscription process to about 4-5 times compared to bulk material.

7.
Appl Opt ; 56(12): 3251-3256, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430245

RESUMO

We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2 W from both a single-mode 50 µm waveguide laser and a multimode 80 µm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

8.
Opt Express ; 24(19): 22144-58, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661949

RESUMO

Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope.

9.
Opt Express ; 24(12): 13033-43, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410322

RESUMO

A negative value for the nonlinear refraction in graphene is experimentally observed and unambiguously verified by performing a theoretical analysis arising from the conductivity of the graphene monolayer. The nonlinear optical properties of multi-layer graphene are experimentally studied by employing the Z-scan technique. The measurements are carried out at 1150, 1550, 1900 and 2400 nm with a 100-femtosecond laser source. Under laser illumination the multi-layer graphene exhibits a transmittance increase due to saturable absorption, followed by optical limiting due to two-photon absorption. The saturation irradiance Isat and the two-photon absorption coefficient ß are measured in the operating wavelength range. Furthermore, an irradiance-dependent nonlinear refraction is observed and discriminated from the conventional nonlinear refraction coefficient n2, which is not irradiance dependent. The values obtained for the irradiance-dependent nonlinear refraction are in the order of ∼10-9 cm2W-1, approximately 8 orders of magnitude larger than any bulk dielectrics.

10.
Opt Express ; 24(6): 6350-8, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136826

RESUMO

The powerful ultrafast laser inscription technique is used to fabricate optical waveguides in gallium lanthanum sulphide substrates. For the first time the refractive index profile and the dispersion of such ultrafast laser inscribed waveguides are experimentally measured. In addition the Zero Dispersion Wavelength of both the waveguides and bulk substrate is experimentally determined. The Zero Dispersion Wavelength was determined to be between 3.66 and 3.71 µm for the waveguides and about 3.61 µm for the bulk. This work paves the way for realizing ultrafast laser inscribed waveguide devices in gallium lanthanum sulphide glasses for near and mid-IR applications.

11.
Opt Express ; 24(4): 3502-12, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907008

RESUMO

We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

12.
Nanoscale ; 8(1): 300-8, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26607763

RESUMO

An approach to unequivocally determine the three-dimensional orientation of optically manipulated NaYF4:Er(3+),Yb(3+) upconverting nanorods (UCNRs) is demonstrated. Long-term immobilization of individual UCNRs inside single and multiple resonant optical traps allow for stable single UCNR spectroscopy studies. Based on the strong polarization dependent upconverted luminescence of UCNRs it is possible to unequivocally determine, in real time, their three-dimensional orientation when optically trapped. In single-beam traps, polarized single particle spectroscopy has concluded that UCNRs orientate parallel to the propagation axis of the trapping beam. On the other hand, when multiple-beam optical tweezers are used, single particle polarization spectroscopy demonstrated how full spatial control over UCNR orientation can be achieved by changing the trap-to-trap distance as well as the relative orientation between optical traps. All these results show the possibility of real time three-dimensional manipulation and tracking of anisotropic nanoparticles with wide potential application in modern nanobiophotonics.

13.
Opt Lett ; 40(24): 5818-21, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670520

RESUMO

We report on the direct laser fabrication of step-index waveguides in fused silica substrates for operation in the 3.5 µm mid-infrared wavelength range. We demonstrate core-cladding index contrasts of 0.7% at 3.39 µm and propagation losses of 1.3 (6.5) dB/cm at 3.39 (3.68) µm, close to the intrinsic losses of the glass. We also report on the existence of three different laser modified SiO2 glass volumes, their different micro-Raman spectra, and their different temperature-dependent populations of color centers, tentatively clarifying the SiO2 lattice changes that are related to the large index changes.

14.
Phys Chem Chem Phys ; 17(9): 6314-27, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25648631

RESUMO

A series of xAs40Se60·(100 - x)As40S60 glasses, where x = 0, 25, 33, 50, 67, 75 and 100 mol% As40Se60, has been studied using neutron and X-ray total scattering, Raman spectroscopy and (77)Se MAS-NMR. The results are presented with measurements of non-linear refractive indices, n2, and densities. There is no evidence for the formation of homopolar bonds in these glasses, but neutron correlation functions suggest that there is a non-random distribution of sulfur and selenium atoms in sulfur-rich glasses. The average number of sulfur atoms at a distance of 3-4 Å from a selenium atom, nSeS, deviates from a linear variation with x in glasses containing <50 mol% As40Se60; n2 for these glasses also varies non-linearly with x. Importantly, a direct comparison of n2 and nSeS gives a linear correlation, suggesting that n2 may be related to the distribution of chalcogen atoms in the glasses.

15.
Opt Lett ; 39(8): 2241, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978962

RESUMO

We respond to the comment submitted by Xian Feng on our recent Letter, Opt. Lett.38, 4679 (2013). The comment addressed the attenuation of our oxide tellurite glass labeled TWPN/I/6. We provide the originally measured absorbance spectrum of the glass and correct values of its mid-infrared attenuation.

16.
Opt Express ; 22(6): 7052-7, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24664054

RESUMO

A compact mid-infrared channel waveguide laser is demonstrated in Cr:ZnS with a view to power scaling chromium laser technology utilizing the thermo-mechanical advantages of Cr:ZnS over alternative transition metal doped II-VI semiconductor laser materials. The laser provided a maximum power of 101 mW of CW output at 2333 nm limited only by the available pump power. A maximum slope efficiency of 20% was demonstrated.

17.
Opt Lett ; 39(18): 5289-92, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466253

RESUMO

We report on the self-Q-switched laser operation of a monolithic Nd:Cr:YVO(4) channel waveguide cavity. Femtosecond laser inscription was used to fabricate a buried channel waveguide in the substrate. The Nd:Cr:YVO(4) crystal works as both the gain medium and the saturable absorber, which enables the realization of a self-Q-switched waveguide laser pumped at 808 nm and emitting at 1064 nm. The compact waveguide cavity achieved maximum output powers up to 57 mW, corresponding to a single-pulse energy of 22.8 nJ, at 2.3 MHz repetition rate with a pulse duration of 85 ns.

18.
Materials (Basel) ; 7(6): 4658-4668, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28788699

RESUMO

In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700-3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500-4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW) at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700-3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950-2500 nm range.

19.
Opt Lett ; 38(22): 4679-82, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322104

RESUMO

We report on supercontinuum generation (SG) in a hexagonal lattice tellurite photonic crystal fiber (PCF). The fiber has a regular lattice with a lattice constant Λ = 2 µm, linear filling factor d/Λ = 0.75, and a solid core 2.7 µm in diameter. Dispersion, calculated from scanning electron microscope (SEM) image of drawn fiber, has zero dispersion wavelength (ZDW) at 1410 and 4236 nm with a maximum of 193 ps/nm/km at 2800 nm. Under pumping with 150 fs/36 nJ/1580 nm pulses, supercontinuum spectrum in a bandwidth from 800 nm to over 2500 nm was observed in a 2 cm long PCF sample, which is comparable to results reported for suspended core tellurite PCFs pumped at wavelengths over 1800 nm. Measured spectrum is analyzed numerically with good agreement, and observed spectral broadening is interpreted. To our best knowledge, tellurite glass, regular lattice PCFs for successful SG in this bandwidth have not been reported before.

20.
Opt Lett ; 38(13): 2194-6, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811874

RESUMO

We report a Cr:ZnSe channel waveguide laser operating at 2486 nm. A maximum power output of 285 mW is achieved and slope efficiencies as high as 45% are demonstrated. Ultrafast laser inscription is used to fabricate the depressed cladding waveguide in a polycrystalline Cr:ZnSe sample. Waveguide structures are proposed as a compact and robust solution to the thermal lensing problem that has so far limited power scaling of transition metal doped II-VI lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...