Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 131784, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697440

RESUMO

GRK5 holds a pivotal role in cellular signaling pathways, with its overexpression in cardiomyocytes, neuronal cells, and tumor cells strongly associated with various chronic degenerative diseases, which highlights the urgent need for potential inhibitors. In this study, multiclass classification-based QSAR models were developed using diverse machine learning algorithms. These models were built from curated compounds with experimentally derived GRK5 inhibitory activity. Additionally, a pharmacophore model was constructed using active compounds from the dataset. Among the models, the SVM-based approach proved most effective and was initially used to screen DrugBank compounds within the applicability domain. Compounds showing significant GRK5 inhibitory potential underwent evaluation for key pharmacophoric features. Prospective compounds were subjected to molecular docking to assess binding affinity towards GRK5's key active site amino acid residues. Stability at the binding site was analyzed through 200 ns molecular dynamics simulations. MM-GBSA analysis quantified individual free energy components contributing to the total binding energy with respect to binding site residues. Metadynamics analysis, including PCA, FEL, and PDF, provided crucial insights into conformational changes of both apo and holo forms of GRK5 at defined energy states. The study identifies DB02844 (S-Adenosyl-1,8-Diamino-3-Thiooctane) and DB13155 (Esculin) as promising GRK5 inhibitors, warranting further in vitro and in vivo validation studies.


Assuntos
Quinase 5 de Receptor Acoplado a Proteína G , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Relação Quantitativa Estrutura-Atividade , Quinase 5 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/química , Ligantes , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Termodinâmica , Ligação Proteica , Sítios de Ligação , Doença Crônica , Farmacóforo
2.
Mol Divers ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460065

RESUMO

Contemporary research has convincingly demonstrated that upregulation of G protein-coupled receptor 183 (GPR183), orchestrated by its endogenous agonist, 7α,25-dihydroxyxcholesterol (7α,25-OHC), leads to the development of cancer, diabetes, multiple sclerosis, infectious, and inflammatory diseases. A recent study unveiled the cryo-EM structure of 7α,25-OHC bound GPR183 complex, presenting an untapped opportunity for computational exploration of potential GPR183 inhibitors, which served as our inspiration for the current work. A predictive and validated two-dimensional QSAR model using genetic algorithm (GA) and multiple linear regression (MLR) on experimental GPR183 inhibition data was developed. QSAR study highlighted that structural features like dissimilar electronegative atoms, quaternary carbon atoms, and CH2RX fragment (X: heteroatoms) influence positively, while the existence of oxygen atoms with a topological separation of 3, negatively affects GPR183 inhibitory activity. Post assessment of true external set prediction capability, the MLR model was deployed to screen 12,449 DrugBank compounds, followed by a screening pipeline involving molecular docking, druglikeness, ADMET, protein-ligand stability assessment using deep learning algorithm, molecular dynamics, and molecular mechanics. The current findings strongly evidenced DB05790 as a potential lead for prospective interference of oxysterol-mediated GPR183 overexpression, warranting further in vitro and in vivo validation.

3.
Sci Rep ; 14(1): 3696, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355980

RESUMO

Nipah virus (NiV), with its significantly higher mortality rate compared to COVID-19, presents a looming threat as a potential next pandemic, particularly if constant mutations of NiV increase its transmissibility and transmission. Considering the importance of preventing the facilitation of the virus entry into host cells averting the process of assembly forming the viral envelope, and encapsulating the nucleocapsid, it is crucial to take the Nipah attachment glycoprotein-human ephrin-B2 and matrix protein as dual targets. Repurposing approved small molecules in drug development is a strategic choice, as it leverages molecules with known safety profiles, accelerating the path to finding effective treatments against NiV. The approved small molecules from DrugBank were used for repurposing and were subjected to extra precision docking followed by absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling. The 4 best molecules were selected for 500 ns molecular dynamics (MD) simulation followed by Molecular mechanics with generalized Born and surface area solvation (MM-GBSA). Further, the free energy landscape, the principal component analysis followed by the defined secondary structure of proteins analysis were introspected. The inclusive analysis proposed that Iotrolan (DB09487) and Iodixanol (DB01249) are effective dual inhibitors, while Rutin (DB01698) and Lactitol (DB12942) were found to actively target the matrix protein only.


Assuntos
COVID-19 , Vírus Nipah , Humanos , Vírus Nipah/genética , Simulação de Dinâmica Molecular , Reposicionamento de Medicamentos , Estrutura Secundária de Proteína , Simulação de Acoplamento Molecular
4.
Chemosphere ; 349: 140810, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029938

RESUMO

Labeo rohita, a fish species within the Carp family, holds significant dietary and aquacultural importance in South Asian countries. However, the habitats of L. rohita often face exposure to various harmful pesticides and organic compounds originating from industrial and agricultural runoff. It is challenging to individually investigate the effects of each potentially harmful compound. In such cases, in silico techniques like Quantitative Structure-Activity Relationship (QSAR) and quantitative Read-Across Structure-Activity Relationship (q-RASAR) can be employed to construct algorithmic models capable of simultaneously assessing the toxicity of numerous compounds. We utilized the US EPA's ToxValDB database to curate data regarding acute median lethal concentration (LC50) toxicity for L. rohita. The experimental variables included study type (mortality), study duration (ranging from 0.25 h to 4 h), exposure route (static, flowthrough, and renewal), exposure method (drinking water), and types of chemicals (industrial chemicals and pharmaceuticals). Using this dataset, we developed regression-based QSAR and q-RASAR models to predict chemical toxicity to L. rohita based on chemical descriptors. The key descriptors for predicting the toxicity of L. rohita in the regression-based QSAR model include F05[S-Cl], SpMax_EA(ri), s4_relPathLength_2, and SpDiam_AEA(ed). These descriptors can be employed to estimate the toxicity of untested compounds and aid in the development of compounds with lower toxicity based on the presence or absence of these descriptors. Both the QSAR and q-RASAR models serve as valuable tools for understanding the chemicals' structural features responsible for toxicity and for filling gaps in aquatic toxicity data by predicting the toxicity of newly untested compounds in relation to L. rohita. Finally, the developed best model was employed to predict 297 external chemicals, the most toxic substances to L. rohita were identified as cyhalothrin, isobornyl thiocyanatoacetate, and paclobutrzol, while the least toxic ones included ethyl acetate, ethylthiourea, and n-butyric acid.


Assuntos
Cyprinidae , Toxinas Biológicas , Animais , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Dose Letal Mediana , Compostos Orgânicos/toxicidade
5.
Mol Divers ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079063

RESUMO

Monkeypox virus (MPXV) has emerged as a significant public health concern due to its potential for human transmission and its severe clinical manifestations. This review synthesizes findings from peer-reviewed articles spanning the last two decades, shedding light on diverse aspects of MPXV research. The exploration commences with an analysis of transmission dynamics, including zoonotic and human-to-human transmission, and potential reservoir hosts. Detailed insights into viral replication mechanisms illuminate its influence on disease progression and pathogenicity. Understanding the genomic and virion structure of MPXV is pivotal for targeted interventions. Genomic characteristics contributing to virulence are examined, alongside recent advancements in virion structure elucidation through cutting-edge imaging techniques. Emphasizing combat strategies, the review lists potential protein targets within the MPXV lifecycle for computer-aided drug design (CADD). The role of protein-ligand interactions and molecular docking simulations in identifying potential drug candidates is highlighted. Despite the absence of approved MPXV medications, the review outlines updates on ongoing small molecules and vaccine development efforts, spanning traditional and innovative platforms. The evolving landscape of computational drug research for MPXV is explored, encompassing advanced algorithms, machine learning, and high-performance computing. In conclusion, this review offers a holistic perspective on MPXV research by integrating insights spanning transmission dynamics to drug design. Equipping researchers with multifaceted understanding underscore the importance of innovative methodologies and interdisciplinary collaborations in addressing MPXV's challenges as research advances.

6.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513249

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity. Classification-based and regression-based QSAR models are employed in the present study to predict the binding affinities of 24 PFAS to HSA. Regression-based QSAR models revealed that the packing density index (PDI) and quantitative estimation of drug-likeness (QED) descriptors were both positively correlated with higher binding affinity, while the classification-based QSAR model showed the average connectivity index of order 4 (X4A) descriptor was inversely correlated with binding affinity. Whereas molecular docking studies suggested that PFAS with the highest binding affinity to HSA create hydrogen bonds with Arg348 and salt bridges with Arg348 and Arg485, PFAS with lower binding affinity either showed no interactions with either amino acid or only interactions with Arg348. Among the studied PFAS, perfluoroalkyl acids (PFAA) with large carbon chain length (>C10) have one of the lowest binding affinities, compared to PFAA with carbon chain length ranging from 7 to 9, which showed the highest affinity to HSA. Generalized Read-Across (GenRA) was used to predict toxicity outcomes for the top five highest binding affinity PFAS based on 10 structural analogs for each and found that all are predicted as being chronic to sub-chronically toxic to HSA. The developed in silico models presented in this work can provide a framework for designing PFAS alternatives, screening compounds currently in use, and for the study of PFAS mixture toxicity, which is an area of intense research.


Assuntos
Fluorocarbonos , Albumina Sérica Humana , Humanos , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Simulação por Computador
7.
Comput Biol Med ; 163: 107240, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442011

RESUMO

Nipah Virus (NiV) is a single-stranded, negative-sense, highly lethal RNA virus. Even though NiV has close to 70-80% of mortality in India and Bangladesh, still there is no available US FDA-approved drug or vaccine. NiV attachment glycoprotein (NiV-G) is critical for NiV to invade the human cell where ephrinB2 which is a crucial membrane-bound ligand that acts as a target of NiV. Most of the research has been performed targeting NiV or human ephrin-B to date. Quinolone derivatives are proven scaffolds for many approved drugs used to treat various bacterial, viral respiratory tract, and urinary tract infections, and rheumatologic disorders such as systemic lupus erythematosus, rheumatoid arthritis. Therefore, we have tried to find potential drug molecules employing quinolone scaffold-based derivatives from PubChem targeting both NiV-G and ephrin-B2 protein. A total of 1500+ quinolone derivatives were obtained from PubChem which were screened based on Drug Likeness followed by being subjected to XP docking employing Schrödinger software. The top ten best molecules were then chosen for their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling based on the docking score ranking. Further, the top five molecules were selected for 200ns molecular dynamics (MD) simulation study with Desmond module followed by MM-GBSA study by Prime module of Schrödinger. The exhaustive analysis leads us to the top three probable lead drug molecules for NiV are PubChem CID 23646770, an analog of PubChem CID 67726448, and PubChem CID 10613168 which have predicted Ki values of 0.480 µm, 0.785 µm, and 0.380 µm, respectively. These proposed molecules can be the future drugs targeting NiV-G and human ephrin-B2 which requires further in vivo validation.


Assuntos
Vírus Nipah , Quinolonas , Humanos , Efrina-B2/genética , Efrina-B2/metabolismo , Vírus Nipah/metabolismo , Quinolonas/metabolismo , Receptores de Superfície Celular/metabolismo , Glicoproteínas/metabolismo , Computadores
8.
Mol Divers ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289383

RESUMO

Cancer is one of the life-threatening diseases and the second leading cause of death in the world. The estrogen receptor can be considered as one of the significant drug targets for cancer. A large number of clinically used anticancer drugs were identified from phytochemicals. Multiple literatures suggested that extracts of Datura sp. significantly inhibit estrogen receptors associated with human cancer. In the present study, all reported natural products present in Datura sp. were subjected to molecular docking against estrogen receptors. The top hits were shortlisted based on binding orientation and docking score and subjected to molecular dynamics simulation to explore the conformational stability followed by binding energy calculation. The ligand [(1S,5R)-8-Methyl-8-Azabicyclo [3.2.1] Octan-3-yl] (2R)-3-Hydroxy-2-Phenylpropanoate depicts highly acceptable MD simulations outcomes and drug-likeness profile. Knowledge-based de novo design and similar ligand screening were executed using the structural information. The designed ligand DL-50 exhibited satisfactory binding, drug-likeness profile, and well-accepted ADMET profile followed by easy synthetic accessibility which further requires experimental validation.

9.
Struct Chem ; : 1-19, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37363045

RESUMO

Nipah virus (NiV) is a high-lethality RNA virus from the family of Paramyxoviridae and genus Henipavirus, classified under Biosafety Level-4 (BSL-4) pathogen due to the severity of pathogenicity and lack of medications and vaccines. Direct contacts or the body fluids of infected animals are the major factor of transmission of NiV. As it is not an airborne infection, the transmission rate is relatively low. Still, mutations of the NiV in the animal reservoir over the years, followed by zoonotic transfer, can make the deadliness of the virus manifold in upcoming years. Therefore, there is no denial of the possibility of a pandemic after COVID-19 considering the severe pathogenicity of NiV, and that is why we need to be prepared with possible drugs in upcoming days. Considering the time constraints, computational aided drug design (CADD) is an efficient way to study the virus and perform the drug design and test the HITs to lead experimentally. Therefore, this review focuses primarily on NiV target proteins (covering NiV and human), experimentally tested repurposed drug details, and latest computational studies on potential lead molecules, which can be explored as potential drug candidates. Computationally identified drug candidates, including their chemical structures, docking scores, amino acid level interaction with corresponding protein, and the platform used for the studies, are thoroughly discussed. The review will offer a one-stop study to access what had been performed and what can be performed in the CADD of NiV.

10.
Nanotoxicology ; 17(1): 78-93, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36891579

RESUMO

The availability of experimental nanotoxicity data is in general limited which warrants both the use of in silico methods for data gap filling and exploring novel methods for effective modeling. Read-Across Structure-Activity Relationship (RASAR) is an emerging cheminformatic approach that combines the usefulness of a QSAR model and similarity-based Read-Across predictions. In this work, we have generated simple, interpretable, and transferable quantitative-RASAR (q-RASAR) models which can efficiently predict the cytotoxicity of TiO2-based multi-component nanoparticles. A data set of 29 TiO2-based nanoparticles with specific amounts of noble metal precursors was rationally divided into training and test sets, and the Read-Across-based predictions for the test set were generated. The optimized hyperparameters and the similarity approach, which yield the best predictions, were used to calculate the similarity and error-based RASAR descriptors. A data fusion of the RASAR descriptors with the chemical descriptors was done followed by the best subset feature selection. The final set of selected descriptors was used to develop the q-RASAR models, which were validated using the stringent OECD criteria. Finally, a random forest model was also developed with the selected descriptors, which could efficiently predict the cytotoxicity of TiO2-based multi-component nanoparticles superseding previously reported models in the prediction quality thus showing the merits of the q-RASAR approach. To further evaluate the usefulness of the approach, we have applied the q-RASAR approach also to a second cytotoxicity data set of 34 heterogeneous TiO2-based nanoparticles which further confirmed the enhancement of external prediction quality of QSAR models after incorporation of RASAR descriptors.


Assuntos
Nanopartículas , Relação Quantitativa Estrutura-Atividade , Titânio/toxicidade , Aprendizado de Máquina , Nanopartículas/toxicidade
11.
Aquat Toxicol ; 256: 106416, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758333

RESUMO

To fight COVID-19 with uncountable medications and bioproducts throughout the world has taken us to another challenge of ecotoxicity. The indiscriminate usage followed by improper disposal of unused antibacterials, antivirals, antimalarials, immunomodulators, angiotensin II receptor blockers, corticosteroids, anthelmintics, anticoagulants etc. can lead us to an unimaginable ecotoxicity in the long run. A series of studies already identified active pharmaceutical ingredients (APIs) of the mentioned therapeutic classes and their metabolites in aquatic bodies as well as in wastewater treatment plants. Therefore, an initial ecotoxicity assessment of the majorly used pharmaceuticals is utmost requirement of the present time. The present in silico risk assessment study is focused on the aquatic toxicity prediction of 81 pharmaceuticals where 77 are most-used pharmaceuticals for COVID-19 throughout the world based on the literature along with one drug nirmatrelvir [PF-07321332] approved for emergency use by US-FDA and three other molecules under clinical trial. The ecotoxicity of the studied compounds were predicted based on the three aquatic species fish, algae and crustaceans employing the highest quality QSAR models available from the literature as well as using ECOSAR and QSAR Toolbox. To compare the toxicity thresholds, we have also used 4 control pharmaceuticals based on the worldwide occurrence from river, lake, STP, WWTPs, influent and effluent followed by high reported aquatic toxicity over the years as per the literature. Based on the statistical comparison, we have proposed top 3 pharmaceuticals used for the COVID-19 most toxic to the aquatic environment. The study will provide confident predictions of aquatic ecotoxicity data related to abundant use of COVID-19 drugs. The major aim of the study is to fill up the aquatic ecotoxicity data gap of major medications used for COVID-19.


Assuntos
COVID-19 , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Medição de Risco , Peixes , Preparações Farmacêuticas , Monitoramento Ambiental
12.
Nanotoxicology ; 16(5): 566-579, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36149909

RESUMO

Metal oxide nanoparticles (MONPs) are commonly found in the aquatic and terrestrial systems as chemical mixtures. Assessment of cytotoxicity associated with single and combination of MONPs can truly identify the concerned environmental risk. Thus, using Escherichia coli as a test model, in vitro cytotoxicity of 6 single MONPs, 15 binary and 20 tertiary mixtures with equitoxic ratios was evaluated following standard bioassay protocols. Assessment of oxidative stress suggested that the production of reactive oxygen species (ROS) was negligible, and the release of metal zinc ions played an important role in the toxicity of MONP mixtures. From our experimental data points, seven quantitative structure-activity relationships (QSARs) models were developed to model the cytotoxicity of these MONPs, based on our created periodic table-based descriptors and experimentally analyzed Zeta-potential. Two strategic approaches i.e. pharmacological and mathematical hypotheses were considered to identify the mixture descriptors pool for modeling purposes. The stringent validation criteria suggested that the model (Model M4) developed with mixture descriptors generated by square-root mole contribution outperformed the other six models considering validation criteria. While considering the pharmacological approach, the 'independent action' generated descriptor pool offered the best model (Model M2), which firmly confirmed that each MONP in the mixture acts through 'independent action' to induce cytotoxicity to E. coli instead of fostering an additive, antagonistic or synergistic effect among MONPs. The total metal electronegativity in a specific metal oxide relative to the number of oxygen atoms and metal valence was associated with a positive contribution to cytotoxicity. At the same time, the core count, which gives a measure of molecular bulk and Zeta potential, had a negative contribution to cytotoxicity.


Assuntos
Nanopartículas Metálicas , Óxidos , Óxidos/toxicidade , Escherichia coli , Nanopartículas Metálicas/toxicidade , Relação Quantitativa Estrutura-Atividade , Metais
13.
Chemosphere ; 309(Pt 1): 136579, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174732

RESUMO

Endocrine Disruptor Chemicals are synthetic or natural molecules in the environment that promote adverse modifications of endogenous hormone regulation in humans and/or in animals. In the present research, we have applied two-dimensional quantitative structure-activity relationship (2D-QSAR) modeling to analyze the structural features of these chemicals responsible for binding to the androgen receptors (logRBA) in rats. We have collected the receptor binding data from the EDKB database (https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-edkb-database) and then employed the DTC-QSAR tool, available from https://dtclab.webs.com/software-tools, for dataset division, feature selection, and model development. The final partial least squares model was evaluated using various stringent validation criteria. From the model, we interpreted that hydrophobicity, steroidal nucleus, bulkiness and a hydrogen bond donor at an appropriate position contribute to the receptor binding affinity, while presence of electron rich features like aromaticity and polar groups decrease the receptor binding affinity. Additionally we have also performed chemical Read-Across predictions using Read-Across-v3.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home, and the results for the external validation metrics were found to be better than the QSAR-derived predictions. The best quality of external predictions emerged from the q-RASAR approach which combines both read-across and QSAR. To explore the essential features responsible for the receptor binding, pharmacophore mapping, molecular docking along with molecular dynamics simulation were also performed, and the results are in accordance with the QSAR/q-RASAR findings.


Assuntos
Disruptores Endócrinos , Relação Quantitativa Estrutura-Atividade , Ratos , Humanos , Animais , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Receptores Androgênicos/metabolismo , Simulação de Acoplamento Molecular , Hormônios
14.
Struct Chem ; 33(5): 1741-1753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692512

RESUMO

The worldwide burden of coronavirus disease 2019 (COVID-19) is still unremittingly prevailing, with more than 440 million infections and over 5.9 million deaths documented so far since the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The non-availability of treatment further aggravates the scenario, thereby demanding the exploration of pre-existing FDA-approved drugs for their effectiveness against COVID-19. The current research aims to identify potential anti-SARS-CoV-2 drugs using a computational approach and repurpose them if possible. In the present study, we have collected a set of 44 FDA-approved drugs of different classes from a previously published literature with their potential antiviral activity against COVID-19. We have employed both regression- and classification-based quantitative structure-activity relationship (QSAR) modeling to identify critical chemical features essential for anticoronaviral activity. Multiple models with the consensus algorithm were employed for the regression-based approach to improve the predictions. Additionally, we have employed a machine learning-based read-across approach using Read-Across-v3.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and linear discriminant analysis for the efficient prediction of potential drug candidate for COVID-19. Finally, the quantitative prediction ability of different modeling approaches was compared using the sum of ranking differences (SRD). Furthermore, we have predicted a true external set of 98 pharmaceuticals using the developed models for their probable anti-COVID activity and their prediction reliability was checked employing the "Prediction Reliability Indicator" tool available from https://dtclab.webs.com/software-tools. Though the present study does not target any protein of viral interaction, the modeling approaches developed can be helpful for identifying or screening potential anti-coronaviral drug candidates. Supplementary information: The online version contains supplementary material available at 10.1007/s11224-022-01975-3.

15.
Arch Toxicol ; 96(5): 1279-1295, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35267067

RESUMO

The reliability of any quantitative structure-activity relationship (QSAR) model depends on multiple aspects such as the accuracy of the input dataset, selection of significant descriptors, the appropriate splitting process of the dataset, statistical tools used, and most notably on the measures of validation. Validation, the most crucial step in QSAR model development, confirms the reliability of the developed QSAR models and the acceptability of each step in the model development. The present review deals with various validation tools that involve multiple techniques that improve the model quality and robustness. The double cross-validation tool helps in building improved quality models using different combinations of the same training set in an inner cross-validation loop. This exhaustive method is also integrated for small datasets (< 40 compounds) in another tool, namely the small dataset modeler tool. The main aim of QSAR researchers is to improve prediction quality by lowering the prediction errors for the query compounds. 'Intelligent' selection of multiple models and consensus predictions integrated in the intelligent consensus predictor tool were found to be more externally predictive than individual models. Furthermore, another tool called Prediction Reliability Indicator was explained to understand the quality of predictions for a true external set. This tool uses a composite scoring technique to identify query compounds as 'good' or 'moderate' or 'bad' predictions. We have also discussed a quantitative read-across tool which predicts a chemical response based on the similarity with structural analogues. The discussed tools are freely available from https://dtclab.webs.com/software-tools or http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/ and https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home (for read-across).


Assuntos
Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
17.
Methods Mol Biol ; 2425: 85-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188629

RESUMO

Implication of computational techniques and in silico tools promote not only reduction of animal experimentations but also save time and money followed by rational designing of drugs as well as controlled synthesis of those "Hits" which show drug-likeness and possess suitable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile. With globalization of diseases, resistance of drugs over the time and modification of viruses and microorganisms, computational tools, and artificial intelligence are the future of drug design and one of the important areas where the principles of sustainability and green chemistry (GC) perfectly fit. Most of the new drug entities fail in the clinical trials over the issue of drug-associated human toxicity. Although ecotoxicity related to new drugs is rarely considered, but this is the high time when ecotoxicity prediction should get equal importance along with human-associated drug toxicity. Thus, the present book chapter discusses the available in silico tools and software for the fast and preliminary prediction of a series of human-associated toxicity and ecotoxicity of new drug entities to screen possibly safer drugs before going into preclinical and clinical trials.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas , Animais , Inteligência Artificial , Simulação por Computador , Desenho de Fármacos , Humanos , Software
18.
Chem Rev ; 122(3): 3637-3710, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34910451

RESUMO

The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.


Assuntos
Água , Catálise , Preparações Farmacêuticas , Solventes
20.
J Cheminform ; 13(1): 9, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579384

RESUMO

The ability of accurate predictions of biological response (biological activity/property/toxicity) of a given chemical makes the quantitative structure-activity/property/toxicity relationship (QSAR/QSPR/QSTR) models unique among the in silico tools. In addition, experimental data of selected species can also be used as an independent variable along with other structural as well as physicochemical variables to predict the response for different species formulating quantitative activity-activity relationship (QAAR)/quantitative structure-activity-activity relationship (QSAAR) approach. Irrespective of the models' type, the developed model's quality, and reliability need to be checked through multiple classical stringent validation metrics. Among the validation metrics, error-based metrics are more significant as the basic idea of a good predictive model is to improve the predictions' quality by lowering the predicted residuals for new query compounds. Following the concept, we have checked the predictive quality of the QSAR and QSAAR models employing kernel-weighted local polynomial regression (KwLPR) approach over the traditional linear and non-linear regression-based approaches tools such as multiple linear regression (MLR) and k nearest neighbors (kNN). Five datasets which were previously modeled using linear and non-linear regression method were considered to implement the KwPLR approach, followed by comparison of their validation metrics outcomes. For all five cases, the KwLPR based models reported better results over the traditional approaches. The present study's focus is not to develop a better or improved QSAR/QSAAR model over the previous ones, but to demonstrate the advantage, prediction power, and reliability of the KwLPR algorithm and establishing it as a novel, powerful cheminformatic tool. To facilitate the use of the KwLPR algorithm for QSAR/QSPR/QSTR/QSAAR modeling, the authors provide an in-house developed KwLPR.RMD script under the open-source R programming language.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...