Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522046

RESUMO

In order to combat various infectious diseases, the utilization of host-directed therapies as an alternative to chemotherapy has gained a lot of attention in the recent past, since it bypasses the existing limitations of conventional therapies. The use of host epigenetic enzymes like histone lysine methyltransferases and lysine demethylases as potential drug targets has successfully been employed for controlling various inflammatory diseases like rheumatoid arthritis and acute leukemia. In our earlier study, we have already shown that the functional knockdown of KDM6B and ASH1L in the experimental model of visceral leishmaniasis has resulted in a significant reduction of organ parasite burden. Herein, we performed a high throughput virtual screening against KDM6B and ASH1L using > 53,000 compounds that were obtained from the Maybridge library and PubChem Database, followed by molecular docking to evaluate their docking score/Glide Gscore. Based on their docking scores, the selected inhibitors were later assessed for their in vitro anti-leishmanial efficacy. Out of all inhibitors designed against KDM6B and ASH1L, HTS09796, GSK-J4 and AS-99 particularly showed promising in vitro activity with IC50 < 5 µM against both extracellular promastigote and intracellular amastigote forms of L. donovani. In vitro drug interaction studies of these inhibitors further demonstrated their synergistic interaction with amphotericin-B and miltefosine. However, GSK-J4 makes an exception by displaying an in different mode of interaction with miltefosine. Collectively, our in silico and in vitro studies acted as a platform to identify the applicability of these inhibitors targeted against KDM6B and ASH1L for anti-leishmanial therapy.

2.
Eur J Med Chem ; 257: 115524, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290183

RESUMO

Towards identification of novel therapeutic candidates, a series of quinazolinone-based acetamide derivatives were synthesized and assessed for their anti-leishmanial efficacy. Amongst synthesized derivatives, compounds F12, F27 and F30 demonstrated remarkable activity towards intracellular L. donovani amastigotes in vitro, with IC50 values of 5.76 ± 0.84 µM, 3.39 ± 0.85 µM and 8.26 ± 1.23 µM against promastigotes, and 6.02 µM ± 0.52, 3.55 ± 0.22 µM and 6.23 ± 0.13 µM against amastigotes, respectively. Oral administration of compounds F12 and F27 entailed >85% reduction in organ parasite burden in L. donovani-infected BALB/c mice and hamsters, by promoting host-protective Th1 cytokine response. In host J774 macrophages, mechanistic studies revealed inhibition of PI3K/Akt/CREB axis, resulting in a decrease of IL-10 versus IL-12 release upon F27 treatment. In silico docking studies conducted with lead compound, F27 demonstrated plausible inhibition of Leishmania prolyl-tRNA synthetase, which was validated via detection of decreased proline levels in parasites and induction of amino acid starvation, leading to G1 cell cycle arrest and autophagy-mediated programmed cell death of L. donovani promastigotes. Structure-activity analysis and study of pharmacokinetic and physicochemical parameters suggest oral availability and underscore F27 as a promising lead for anti-leishmanial drug development.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Cricetinae , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Quinazolinonas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Acetamidas/metabolismo , Camundongos Endogâmicos BALB C
3.
Int Rev Immunol ; 42(3): 217-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35275772

RESUMO

Leishmaniasis is an exemplary paradigm of immune evasion, fraught with the perils of limited clinical assistance, escalating costs of treatment and made worse with the lack of suitable vaccine. While drugs remain central to large-scale disease control, the growing emergence of parasite resistance necessitates the need for combination therapy involving host-directed immunological agents. Also, since prolonged disease progression is associated with strong immune suppression of the host, augmentation of host immunity via restoration of the immunoregulatory circuit involving antigen-presenting cells and T-cells, activation of macrophage function and/or CD4+ T helper 1 cell differentiation may serve as an ideal approach to resolve severe cases of leishmaniasis. As such, therapies that embody a synergistic approach that involve direct killing of the parasite in addition to elevating host immunity are likely to pave the way for widespread elimination of leishmaniasis in the future. With this review, we aim to recapitulate the various immunotherapeutic agents found to hold promise in antileishmanial treatment both in vitro and in vivo. These include parasite-specific antigens, dendritic cell-targeted therapy, recombinant inhibitors of various components intrinsic to immune cell signaling and agonists or antagonists to immune cells and cytokines. We also summarize their abilities to direct therapeutic skewing of the host cell-immune response and review their potential to combat the disease either alone, or as adjunct modalities.


Assuntos
Antiprotozoários , Leishmaniose , Humanos , Frutas , Citocinas , Leishmaniose/tratamento farmacológico , Imunidade Celular , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Fatores Imunológicos/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-36475314

RESUMO

OBJECTIVES: Previously, a series of side chain-modified quinolinyl ß-enaminones was identified to possess significant activity against chloroquine-sensitive or -resistant Plasmodium falciparum and Brugia malayi microfilariae. The present study evaluates in vitro and in vivo activity of the series against Leishmania donovani and reports their mode of action. METHODS: The in vitro activity of 15 quinolinyl ß-enaminone derivatives against Leishmania promastigotes and amastigotes was assessed by luciferase assay. The reduction of organ parasite burden was assessed by Giemsa staining in L. donovani-infected BALB/c mice and hamsters. Intracellular Ca2+ and ATP level in active derivative (3D)-treated promastigotes were determined by fluorescence and luminescence assays. Flow cytometry was performed to determine loss of mitochondrial membrane potential (MMP) using JC-1 dye, reactive oxygen species (ROS) generation using 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dye, phosphatidylserine externalization by Annexin V-FITC staining and cell-cycle arrest by propidium iodide (PI) staining. RESULTS: Compounds 3A, 3B and 3D showed significant in vitro efficacy against L. donovani with IC50 < 6 µM and mild cytotoxicity (∼75% viability) at 25 µM on J774 macrophages. 3A and 3D at 50 mg/kg and 100 mg/kg reduced parasite burden (>84%) in infected mice and hamsters, respectively, whereas 3D-treated animals demonstrated maximum parasite burden reduction without organ toxicity. Mode-of-action analysis revealed that 3D induced apoptosis by inhibiting mitochondrial complex II, reducing MMP and ATP levels, increasing ROS and Ca2+ levels, ultimately triggering phosphatidylserine externalization and sub-G0/G1 cell-cycle arrest in promastigotes. CONCLUSIONS: Compound 3D-mediated inhibition of L. donovani mitochondrial complex induces apoptosis, making it a promising therapeutic candidate for visceral leishmaniasis.

5.
Subcell Biochem ; 100: 581-616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301507

RESUMO

The interaction between metabolic and epigenetic events shapes metabolic adaptations of cancer cells and also helps rewire the proliferation and activity of surrounding immune cells in the tumor microenvironment (TME). Recent studies indicate that the TME imposes metabolic constraints on immune cells, inducing them to attain a tolerogenic state, incompetent of mounting effective tumor eradication. Owing to extensive mutations acquired over repeated cell divisions, tumor cells selectively accumulate metabolites that regulate the activity of key epigenetic enzymes to mediate activation/suppression of genes associated with T-cell function and macrophage polarization. Further, multiple modulators connecting epigenetic and metabolic pathways help dictate the preferential induction of cytokines and expression of lineage-specifying genes associated with immunosuppressive T-cell differentiation.In this chapter, we attempt to discuss the mechanisms underpinning the metabolic and epigenetic interplay in immune cells of the TME and how modulating these events can boost the application of existing anticancer immunotherapy.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/metabolismo , Epigenômica
7.
RSC Med Chem ; 13(6): 746-760, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35814931

RESUMO

A series of uniquely functionalized 2,3,-dihydro-1H-pyyrolo[3,4-b]quinolin-1-one derivatives were synthesized in one to two steps by utilizing a post-Ugi modification strategy and were evaluated for antileishmanial efficacy against visceral leishmaniasis (VL). Among the library compounds, compound 5m exhibited potential in vitro antileishmanial activity (CC50 = 65.11 µM, SI = 7.79, anti-amastigote IC50 = 8.36 µM). In vivo antileishmanial evaluation of 5m demonstrated 56.2% inhibition in liver and 61.1% inhibition in spleen parasite burden in infected Balb/c mice (12.5 mg kg-1, i.p.). In vitro pharmacokinetic study ascertained the stability of 5m in both simulated gastric fluid and simulated intestinal fluid. All the active compounds passed the PAINS filter and showed no toxicity in in silico predictions.

8.
Comput Biol Med ; 146: 105419, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483225

RESUMO

Data science has been an invaluable part of the COVID-19 pandemic response with multiple applications, ranging from tracking viral evolution to understanding the vaccine effectiveness. Asymptomatic breakthrough infections have been a major problem in assessing vaccine effectiveness in populations globally. Serological discrimination of vaccine response from infection has so far been limited to Spike protein vaccines since whole virion vaccines generate antibodies against all the viral proteins. Here, we show how a statistical and machine learning (ML) based approach can be used to discriminate between SARS-CoV-2 infection and immune response to an inactivated whole virion vaccine (BBV152, Covaxin). For this, we assessed serial data on antibodies against Spike and Nucleocapsid antigens, along with age, sex, number of doses taken, and days since last dose, for 1823 Covaxin recipients. An ensemble ML model, incorporating a consensus clustering approach alongside the support vector machine model, was built on 1063 samples where reliable qualifying data existed, and then applied to the entire dataset. Of 1448 self-reported negative subjects, our ensemble ML model classified 724 to be infected. For method validation, we determined the relative ability of a random subset of samples to neutralize Delta versus wild-type strain using a surrogate neutralization assay. We worked on the premise that antibodies generated by a whole virion vaccine would neutralize wild type more efficiently than delta strain. In 100 of 156 samples, where ML prediction differed from self-reported uninfected status, neutralization against Delta strain was more effective, indicating infection. We found 71.8% subjects predicted to be infected during the surge, which is concordant with the percentage of sequences classified as Delta (75.6%-80.2%) over the same period. Our approach will help in real-world vaccine effectiveness assessments where whole virion vaccines are commonly used.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , Aprendizado de Máquina , Pandemias , SARS-CoV-2 , Vacinas de Produtos Inativados , Vírion
9.
Eur J Med Chem ; 221: 113516, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992928

RESUMO

The current therapeutic regimen for visceral leishmaniasis is inadequate and unsatisfactory due to toxic side effects, high cost and emergence of drug resistance. Alternative, safe and affordable antileishmanials are, therefore, urgently needed and toward these we synthesized a series of arylpiperazine substituted pyranone derivatives and screened them against both in vitro and in vivo model of visceral leishmaniasis. Among 22 synthesized compounds, 5a and 5g showed better activity against intracellular amastigotes with an IC50 of 11.07 µM and 15.3 µM, respectively. In the in vivo, 5a significantly reduced hepatic and splenic amastigotes burden in Balb/c mice model of visceral leishmaniasis. On a mechanistic node, we observed that 5a induced direct Leishmania killing via mitochondrial dysfunction like cytochrome c release and loss of membrane potential. Taken together, our results suggest that 5a is a promising lead for further development of antileishmanial drugs.


Assuntos
Antiprotozoários/farmacologia , Desenho de Fármacos , Leishmania donovani/efeitos dos fármacos , Piperazina/farmacologia , Piridonas/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piperazina/química , Piridonas/química , Relação Estrutura-Atividade
10.
Elife ; 102021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33876727

RESUMO

To understand the spread of SARS-CoV2, in August and September 2020, the Council of Scientific and Industrial Research (India) conducted a serosurvey across its constituent laboratories and centers across India. Of 10,427 volunteers, 1058 (10.14%) tested positive for SARS-CoV2 anti-nucleocapsid (anti-NC) antibodies, 95% of which had surrogate neutralization activity. Three-fourth of these recalled no symptoms. Repeat serology tests at 3 (n = 607) and 6 (n = 175) months showed stable anti-NC antibodies but declining neutralization activity. Local seropositivity was higher in densely populated cities and was inversely correlated with a 30-day change in regional test positivity rates (TPRs). Regional seropositivity above 10% was associated with declining TPR. Personal factors associated with higher odds of seropositivity were high-exposure work (odds ratio, 95% confidence interval, p value: 2.23, 1.92-2.59, <0.0001), use of public transport (1.79, 1.43-2.24, <0.0001), not smoking (1.52, 1.16-1.99, 0.0257), non-vegetarian diet (1.67, 1.41-1.99, <0.0001), and B blood group (1.36, 1.15-1.61, 0.001).


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19 , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Humoral , Índia/epidemiologia , Estudos Longitudinais , Masculino , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Estudos Soroepidemiológicos , Fatores de Tempo
11.
J Cell Sci ; 134(5)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589499

RESUMO

Notch signaling governs crucial aspects of intercellular communication spanning antigen-presenting cells and T-cells. In this study, we investigate how Leishmaniadonovani takes advantage of this pathway to quell host immune responses. We report induction of the Notch ligand Jagged1 in L. donovani-infected bone marrow macrophages (BMMϕs) and subsequent activation of RBPJκ (also known as RBPJ) in T cells, which in turn upregulates the transcription factor GATA3. Activated RBPJκ also associates with the histone acetyltransferase p300 (also known as EP300), which binds with the Bcl2l12 promoter and enhances its expression. Interaction of Bcl2L12 with GATA3 in CD4+ T cells facilitates its binding to the interleukin (IL)-10 and IL-4 promoters, thereby increasing the secretion of these cytokines. Silencing Jagged1 hindered these events in a BMMϕ-T cell co-culture system. Upon further scrutiny, we found that parasite lipophosphoglycan (LPG) induces the host phosphoinositide 3-kinase (PI3K)/Akt pathway, which activates ß-catenin and Egr1, the two transcription factors responsible for driving Jagged1 expression. In vivo morpholino-silencing of Jagged1 suppresses anti-inflammatory cytokine responses and reduces organ parasite burden in L. donovani-infected Balb/c mice, suggesting that L. donovani-induced host Jagged1-Notch signaling skews macrophage-T cell crosstalk into disease-promoting Th2 mode in experimental visceral leishmaniasis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Anti-Inflamatórios , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases
13.
J Immunol ; 204(10): 2762-2778, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32277055

RESUMO

Reciprocal changes in histone lysine methylation/demethylation of M(LPS + IFN-γ)/M(IL-10) genes is one of the factors that direct macrophage polarization and contribute to host defense/susceptibility toward infection. Although, histone lysine methyltransferases and lysine demethylases orchestrate these events, their role remains elusive in visceral leishmaniasis, a disease associated with macrophage M(IL-10) polarization. In this study, we observed that L. donovani induced the expression of histone lysine methyltransferases Ash1l, Smyd2, and Ezh2 and histone lysine demethylases Kdm5b and Kdm6b in J774 macrophages and BALB/c mice. Chromatin immunoprecipitation analysis revealed that L. donovani facilitated H3K36 dimethylation at TNF-α promoter by Smyd2 and H3K27 trimethylation at inducible NO synthase promoter by Ezh2 to suppress their expression in macrophages. Furthermore, infection-induced Kdm5b and Kdm6b modulated H3K4 and H3K27 trimethylation at IL-12, TNF-α, and arginase-1 promoters, respectively, whereas H3K4 trimethylation by Ash1l at IL-10 promoter induced its expression. Analysis of transductional events revealed that HIF-1α upregulated Kdm5b and Kdm6b expression, whereas Ash1l and Ezh2 expression were induced by transcription factor MeCP2. Additionally, Smyd2 was induced by c-Myc in infected macrophages. Knockdown of Ash1l, Ezh2, Kdm5b, and Kdm6b by specific small interfering RNA and Vivo-Morpholino, as well as inhibition of Smyd2 by its specific inhibitor, AZ505, led to increased protective proinflammatory response and inhibited amastigote multiplication in infected J774 macrophages and BALB/c mice, respectively. Collectively, our findings demonstrate that L. donovani exploits specific histone lysine methyltransferases/demethylases to redirect epigenetic programming of M(LPS + IFN-γ)/M(IL-10) genes for its successful establishment within the host.


Assuntos
Interferon gama/metabolismo , Interleucina-10/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Animais , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Evasão da Resposta Imune , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/genética
14.
Vaccine ; 38(2): 355-365, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648908

RESUMO

CD11c+CD8α+ and CD11c+CD11b+ dendritic cells are two major subsets of murine splenic CD11c+ DCs which play a crucial role in T cell priming and shaping Th1/Th2 responses, but their role in the context of experimental visceral leishmaniasis (VL) is poorly understood. Herein, we showed that L. donovani infection in Balb/c mice preferentially decreased the population abundance of CD11c+CD11b+ DCs and increased relative abundance of splenic CD11c+CD8α +DCs. During infection, splenic CD11c+CD11b+ DCs induced Th1 differentiation whereas CD11c+CD8α+ DCs promoted Th2 differentiation. Additionally, treatment of infected mice with miltefosine as experimental control exhibited host defense allowing the restoration of CD11c+CD11b+ population and decrease in CD11c+CD8α+ subset. Furthermore, reciprocal regulation of immune accessory surface molecules, Sema4A and OX40L critically determined Th1/Th2 response induced by these DC subsets during VL. L. donovani infection significantly induced OX40L expression and slightly downregulated SEMA 4A expression in CD11c+CD8α+ DCs whereas miltefosine treatment significantly downregulated OX40L expression along with pronounced upregulation of SEMA 4A expression in CD11c+CD11b+ DCs. SiRNA mediated knockdown of SEMA 4A markedly reduced CD11c+CD11b+ driven IFN-γ, TNF-α and IL-12 synthesis in miltefosine treated mice whereas functional blocking of OX40L decreased CD11c+CD8α+ induced IL-10, IL-4 and TGF-ß synthesis in L. donovani infected group. Vaccination of Balb/c mice with antigen-pulsed + CpG-ODN-activated DC subsets revealed that only antigen-pulsed CD11c+CD11b+ DCs eliminated parasite load in visceral organ and restored protective Th1 cytokine response. Collectively, our results suggest that differential regulation of splenic CD11c+ subsets by L. donovani is essential for disease progression and specific subtypes may be exploited as prophylactic measures against visceral leishmaniasis.


Assuntos
Citocinas/imunologia , Células Dendríticas/imunologia , Leishmaniose Visceral/imunologia , Baço/imunologia , Animais , Antígeno CD11b/imunologia , Antígeno CD11c/imunologia , Antígenos CD8/imunologia , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imunidade , Camundongos , Camundongos Endogâmicos BALB C
15.
J Immunol ; 204(3): 596-610, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882519

RESUMO

Immune evasion strategies adopted by Leishmania donovani involve the exploitation of suppressor of cytokine signaling (SOCS) proteins that are well-known negative regulators of the JAK/STAT pathway. However, the cellular mechanism underpinning the induction of SOCS isoforms and their role in breaching the multilevel regulatory circuit connecting the innate and adaptive arms of immunity are still ambiguous during experimental visceral leishmaniasis. Using bone marrow-derived macrophages (BMMфs) and CD4+ T cells, we observed that L. donovani preferentially upregulates SOCS1 and SOCS3 expression in macrophages and T cells, respectively, whereas the SOCS1 level remains consistently high in BMMфs and SOCS3 expression is pronounced and long lasting in T cells. Consequently, this inhibits STAT1-mediated IL-12 induction in macrophages & STAT4-mediated IFN-γ synthesis in T cells. Mechanistically, PI3K/Akt-mediated SRF activation promotes nuclear translocation and binding of Egr2 to SOCS1 promoter for its early induction in infected BMMфs. Additionally, L. donovani activates IDO/kynurenine/AHR signaling in BMMфs to maintain prolonged SOCS1 expression. Later, PGE2, secreted from infected BMMфs induces cAMP-PKA pathway by binding to the EP2/EP4 receptor of CD4+ T cells, leading to SP1, CREB, and GATA1 activation and SOCS3 expression. Small interfering RNA-mediated silencing of SOCS1 and SOCS3 in macrophage and T cells, respectively, restored IL-12 and IFN-γ cytokine levels and BMMф-T cell interaction. Vivo morpholino-mediated silencing of SOCS1 and SOCS3 resulted in protective cytokine responses, thereby reducing organ parasite burden significantly in L. donovani-infected BALB/c mice. Collectively, our results imply that L. donovani orchestrates different SOCS isoforms to impair macrophage-T cell cross-talk and preserve its own niche.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune , Imunidade Celular , Interferon gama/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Regulação para Cima
16.
Eur J Med Chem ; 182: 111632, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499363

RESUMO

ß-amino acids and their analogues are gathering increased attention not only because of their antibacterial and antifungal activity, but also for their use in designing peptidomimetics with increased oral bioavailability and resistance to metabolic degradation. In this study, a series of α-phenyl substituted chalcones, α-phenyl, ß-amino substituted dihydrochalcones and ß-amino acid derivatives were synthesized and evaluated for their antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all synthesized derivatives, 10c showed promising antileishmanial efficacy against both extracellular promastigote and intracellular amastigote (IC50 8.2 µM and 20.5 µM respectively) of L. donovani with negligible cytotoxic effect towards J774 macrophages and Vero cells. 10c effectively reduced spleen and liver parasite burden (>90%) in both hamster and Balb/c model of VL without any hepatotoxicity. In vitro pharmacokinetic analysis showed that 10c was stable in gastric fluid and plasma of Balb/c mice at 10 µg/ml. Further analysis of the molecular mechanism revealed that 10c entered into the parasite by depolarizing the plasma membrane rather than forming nonspecific pores and induced molecular events like loss in mitochondrial membrane potential with a gradual decline in ATP production. This, in turn, did not induce programmed cell death of the parasite; rather 10c induced bioenergetic collapse of the parasite by decreasing ATP synthesis through specific inhibition of mitochondrial complex III activity. Altogether, our results allude to the therapeutic potential of ß-amino acid derivatives as novel antileishmanials, identifying them as lead compounds for further exploration in the design of potent candidates for the treatment of visceral leishmaniasis.


Assuntos
Aminoácidos/farmacologia , Antiprotozoários/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Aminoácidos/química , Animais , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Relação Dose-Resposta a Droga , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Células Vero
17.
J Med Chem ; 62(11): 5655-5671, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31124675

RESUMO

In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC50 9.54 and 5.42 µM, respectively) and intracellular amastigote (IC50 9.81 and 3.75 µM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Metronidazol/síntese química , Metronidazol/farmacologia , Quinolinas/química , Animais , Antiprotozoários/química , Antiprotozoários/farmacocinética , Técnicas de Química Sintética , Chlorocebus aethiops , Modelos Animais de Doenças , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/fisiologia , Metronidazol/química , Metronidazol/farmacocinética , Ratos , Relação Estrutura-Atividade , Distribuição Tecidual , Células Vero
18.
J Immunol ; 201(3): 957-970, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907707

RESUMO

IL-1R/TLR signaling plays a significant role in sensing harmful foreign pathogens and mounting effective innate and adaptive immune responses. However, the precise mechanism by which Leishmania donovani, an obligate intramacrophagic pathogen, breaches IL-1R/TLR signaling and host-protective immunity remains obscure. In this study, we report the novel biphasic role of Toll-interacting protein (Tollip), a negative regulator of the IL-1R/TLR pathway, in the disease progression of experimental visceral leishmaniasis. We observed that during early hours of infection, L. donovani induced phosphorylation of IRAK-1, resulting in the release of Tollip from the IL-1R-associated kinase (IRAK)-1 complex in J774 macrophages, which then acted as an endocytic adaptor on cell surface IL-1R1 and promoted its lysosomal degradation. In the later stage, Tollip shuttled back to IRAK-1, thereby inhibiting IRAK-1 phosphorylation in association with IRAK-M to neutralize downstream TLR signaling in infected macrophages. Moreover, during late infection, L. donovani enhanced nuclear translocation and recruitment of transcription factors early growth response protein 2, NF erythroid 2-related factor 2, and Ahr on Tollip promoter for its induction. Small interfering RNA-mediated silencing of Tollip in infected macrophages significantly enhanced NF-κB activation and induced host-defensive IL-12 and TNF-α synthesis, thereby reducing amastigote multiplication. Likewise, abrogation of Tollip in L. donovani-infected BALB/c mice resulted in STAT-1-, IRF-1-, and NF-κB-mediated upregulation of host-protective cytokines and reduced organ parasite burden, thereby implicating its role in disease aggravation. Taken together, we conclude that L. donovani exploited the multitasking function of Tollip for its own establishment through downregulating IL-1R1/TLR signaling in macrophages.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Leishmania donovani/imunologia , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Animais , Células Cultivadas , Regulação para Baixo/imunologia , Feminino , Quinases Associadas a Receptores de Interleucina-1/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B , Fosforilação/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima/imunologia
19.
Parasitol Res ; 117(9): 2901-2912, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29946763

RESUMO

We earlier found that F6 fraction of human filaria Brugia malayi cross-reacted with sera of Leishmania donovani infected hamsters and immunization with F6 inhibited both filarial and leishmanial infections. In the present study, we identified a 52.9-93.6 kDa fraction (Ld1) of L. donovani that cross-reacted with sera of B. malayi infected animals and investigated effect of Ld1 on filarial infection. Immunization of BALB/c mice with Ld1 facilitated B. malayi infection with remarkable increase in parasite burden. Facilitation of filarial infection was associated with downregulated cell proliferation, IL-5, IL-13, IFN-γ, TNF-α, and IL-2 levels and upregulated IL-4 and TGF-ß. Ld1 exposure also suppressed MHC class-I, MHC class-II, and FcεR1 expression, and phagocytosis in naive mouse macrophages, and CD4+, CD8+, and CD19+ cell population in mouse spleen. Two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight-mass spectrometry revealed eight proteins in Ld1: putative heat shock protein (HSP) 70-related protein 1, HSP70 mitochondrial precursor, alanine aminotransferase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, protein disulfide isomerase, putative ATPase beta subunit, trypanothione reductase, and a hypothetical protein. HSP70 protein mitochondrial precursor and trypanothione reductase showed homology with Trypanosoma cruzi and L. donovani, respectively, and the rest 6 proteins including hypothetical protein bear homology with L. infantum. In conclusion, the present study for the first time shows that immunization with filarial cross-reactive Ld1 fraction of L. donovani facilitates filarial infection by modulating Th1 and Th2 responses. Ld1 molecules may therefore facilitate filarial infection in filaria-leishmania co-infection.


Assuntos
Brugia Malayi/imunologia , Reações Cruzadas/imunologia , Filariose/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose/imunologia , Animais , Proliferação de Células , Coinfecção/imunologia , Coinfecção/parasitologia , Cricetinae , Filariose/parasitologia , Humanos , Leishmaniose/parasitologia , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia , Células Th2/imunologia , Vacinação
20.
Cell Mol Life Sci ; 75(3): 563-588, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28900667

RESUMO

In an endeavor to search for affordable and safer therapeutics against debilitating visceral leishmaniasis, we examined antileishmanial potential of ammonium trichloro [1,2-ethanediolato-O,O']-tellurate (AS101); a tellurium based non toxic immunomodulator. AS101 showed significant in vitro efficacy against both Leishmania donovani promastigotes and amastigotes at sub-micromolar concentrations. AS101 could also completely eliminate organ parasite load from L. donovani infected Balb/c mice along with significant efficacy against infected hamsters (˃93% inhibition). Analyzing mechanistic details revealed that the double edged AS101 could directly induce apoptosis in promastigotes along with indirectly activating host by reversing T-cell anergy to protective Th1 mode, increased ROS generation and anti-leishmanial IgG production. AS101 could inhibit IL-10/STAT3 pathway in L. donovani infected macrophages via blocking α4ß7 integrin dependent PI3K/Akt signaling and activate host MAPKs and NF-κB for Th1 response. In silico docking and biochemical assays revealed AS101's affinity to form thiol bond with cysteine residues of trypanothione reductase in Leishmania promastigotes leading to its inactivation and inducing ROS-mediated apoptosis of the parasite via increased Ca2+ level, loss of ATP and mitochondrial membrane potential along with metacaspase activation. Our findings provide the first evidence for the mechanism of action of AS101 with excellent safety profile and suggest its promising therapeutic potential against experimental visceral leishmaniasis.


Assuntos
Etilenos/uso terapêutico , Integrinas/antagonistas & inibidores , Leishmania donovani/enzimologia , Leishmaniose Visceral/tratamento farmacológico , NADH NADPH Oxirredutases/efeitos dos fármacos , Animais , Células Cultivadas , Cricetinae , Modelos Animais de Doenças , Etilenos/farmacologia , Feminino , Interações Hospedeiro-Parasita/efeitos dos fármacos , Integrinas/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NADH NADPH Oxirredutases/metabolismo , Oxirredução/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...