Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1292568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090597

RESUMO

Introduction: Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods: We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results: Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion: These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration: Clinicaltrials.gov, identifier NCT04743388.


Assuntos
COVID-19 , Citocinas , Humanos , Vacina BNT162 , Interleucina-15 , SARS-CoV-2 , COVID-19/prevenção & controle , Imunidade Adaptativa , Vacinação , Anti-Inflamatórios
2.
Cell Rep ; 42(5): 112501, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37178117

RESUMO

Locoregional monotherapy with heterodimeric interleukin (IL)-15 (hetIL-15) in a triple-negative breast cancer (TNBC) orthotopic mouse model resulted in tumor eradication in 40% of treated mice, reduction of metastasis, and induction of immunological memory against breast cancer cells. hetIL-15 re-shaped the tumor microenvironment by promoting the intratumoral accumulation of cytotoxic lymphocytes, conventional type 1 dendritic cells (cDC1s), and a dendritic cell (DC) population expressing both CD103 and CD11b markers. These CD103intCD11b+DCs share phenotypic and gene expression characteristics with both cDC1s and cDC2s, have transcriptomic profiles more similar to monocyte-derived DCs (moDCs), and correlate with tumor regression. Therefore, hetIL-15, a cytokine directly affecting lymphocytes and inducing cytotoxic cells, also has an indirect rapid and significant effect on the recruitment of myeloid cells, initiating a cascade for tumor elimination through innate and adoptive immune mechanisms. The intratumoral CD103intCD11b+DC population induced by hetIL-15 may be targeted for the development of additional cancer immunotherapy approaches.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Cadeias alfa de Integrinas/metabolismo , Neoplasias/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Linfócitos/metabolismo , Antineoplásicos/metabolismo , Fatores Imunológicos/metabolismo , Camundongos Endogâmicos C57BL , Microambiente Tumoral
3.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831395

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.

4.
Neuroscience ; 506: 114-126, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270413

RESUMO

Increased expression of alpha-synuclein (ASYN) and decreased expression of Nurr1 are associated with Parkinson's disease (PD) pathogenesis. These two proteins interact functionally and ASYN overexpression suppresses Nurr1 levels. ASYN pan-neuronal overexpression coupled with Nurr1 hemizygosity followed by Nurr1 repression in aging mice results in the manifestation of a typical PD-related phenotype and pathology. Here we investigated in mice the effects of C-terminally truncated ASYN(120) overexpression in dopaminergic (DA-ergic) neurons compounded with Nurr1 hemizygosity ('2-hit-DA'). We report that '2-hit-DA' animals did not manifest a characteristic PD-related phenotype, despite further substantia nigra ASYN-overexpression-dependent and age dependent Nurr1 protein downregulation. However, they displayed increased energy expenditure, reduced striatal dopamine (DA) and prolonged hyperactivity to a novel environment indicating impaired habituation. This DA-ergic dysfunction was observed in young adult '2-hit-DA' mice, persisted throughout life and it was associated with ASYN and Nurr1 synergistic alterations of DAT levels and function. Our experiments indicate that the expression levels of ASYN and Nurr1 are critical in the dysregulation of the nigrostriatal DA system and may be involved in neuropsychiatric aspects of PD.


Assuntos
alfa-Sinucleína , Animais , Camundongos
5.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35616614

RESUMO

Given the clinical, economic, and societal impact of obesity, unraveling the mechanisms of adipose tissue expansion remains of fundamental significance. We previously showed that white adipose tissue (WAT) levels of 3-mercaptopyruvate sulfurtransferase (MPST), a mitochondrial cysteine-catabolizing enzyme that yields pyruvate and sulfide species, are downregulated in obesity. Here, we report that Mpst deletion results in fat accumulation in mice fed a high-fat diet (HFD) through transcriptional and metabolic maladaptation. Mpst-deficient mice on HFD exhibit increased body weight and inguinal WAT mass, reduced metabolic rate, and impaired glucose/insulin tolerance. At the molecular level, Mpst ablation activates HIF1α, downregulates subunits of the translocase of outer/inner membrane (TIM/TOM) complex, and impairs mitochondrial protein import. MPST deficiency suppresses the TCA cycle, oxidative phosphorylation, and fatty acid oxidation, enhancing lipid accumulation. Sulfide donor administration to obese mice reverses the HFD-induced changes. These findings reveal the significance of MPST for white adipose tissue biology and metabolic health and identify a potential new therapeutic target for obesity.


Assuntos
Intolerância à Glucose , Sulfurtransferases , Animais , Dieta Hiperlipídica , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Sulfetos , Sulfurtransferases/metabolismo
6.
Front Immunol ; 13: 1014802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713398

RESUMO

Immunotherapy has emerged as a viable approach in cancer therapy, with cytokines being of great interest. Interleukin IL-15 (IL-15), a cytokine that supports cytotoxic immune cells, has been successfully tested as an anti-cancer and anti-metastatic agent, but combinations with conventional chemotherapy and surgery protocols have not been extensively studied. We have produced heterodimeric IL-15 (hetIL-15), which has shown anti-tumor efficacy in several murine cancer models and is being evaluated in clinical trials for metastatic cancers. In this study, we examined the therapeutic effects of hetIL-15 in combination with chemotherapy and surgery in the 4T1 mouse model of metastatic triple negative breast cancer (TNBC). hetIL-15 monotherapy exhibited potent anti-metastatic effects by diminishing the number of circulating tumor cells (CTCs) and by controlling tumor cells colonization of the lungs. hetIL-15 treatment in combination with doxorubicin resulted in enhanced anti-metastatic activity and extended animal survival. Systemic immune phenotype analysis showed that the chemoimmunotherapeutic regimen shifted the tumor-induced imbalance of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in favor of cytotoxic effector cells, by simultaneously decreasing PMN-MDSCs and increasing the frequency and activation of effector (CD8+T and NK) cells. Tumor resection supported by neoadjuvant and adjuvant administration of hetIL-15, either alone or in combination with doxorubicin, resulted in the cure of approximately half of the treated animals and the development of anti-4T1 tumor immunity. Our findings demonstrate a significant anti-metastatic potential of hetIL-15 in combination with chemotherapy and surgery and suggest exploring the use of this regimen for the treatment of TNBC.


Assuntos
Antineoplásicos , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Interleucina-15/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Fatores Imunológicos/uso terapêutico
7.
Viruses ; 13(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578426

RESUMO

COVID-19 is an ongoing pandemic with high morbidity and mortality. Despite meticulous research, only dexamethasone has shown consistent mortality reduction. Convalescent plasma (CP) infusion might also develop into a safe and effective treatment modality on the basis of recent studies and meta-analyses; however, little is known regarding the kinetics of antibodies in CP recipients. To evaluate the kinetics, we followed 31 CP recipients longitudinally enrolled at a median of 3 days post symptom onset for changes in binding and neutralizing antibody titers and viral loads. Antibodies against the complete trimeric Spike protein and the receptor-binding domain (Spike-RBD), as well as against the complete Nucleocapsid protein and the RNA binding domain (N-RBD) were determined at baseline and weekly following CP infusion. Neutralizing antibody (pseudotype NAb) titers were determined at the same time points. Viral loads were determined semi-quantitatively by SARS-CoV-2 PCR. Patients with low humoral responses at entry showed a robust increase of antibodies to all SARS-CoV-2 proteins and Nab, reaching peak levels within 2 weeks. The rapid increase in binding and neutralizing antibodies was paralleled by a concomitant clearance of the virus within the same timeframe. Patients with high humoral responses at entry demonstrated low or no further increases; however, virus clearance followed the same trajectory as in patients with low antibody response at baseline. Together, the sequential immunological and virological analysis of this well-defined cohort of patients early in infection shows the presence of high levels of binding and neutralizing antibodies and potent clearance of the virus.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos/imunologia , COVID-19/terapia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunização Passiva , Cinética , Masculino , Pessoa de Meia-Idade , Soroterapia para COVID-19
8.
Cell Rep ; 36(6): 109504, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352226

RESUMO

Early responses to vaccination are important for shaping both humoral and cellular protective immunity. Dissecting innate vaccine signatures may predict immunogenicity to help optimize the efficacy of mRNA and other vaccine strategies. Here, we characterize the cytokine and chemokine responses to the 1st and 2nd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in antigen-naive and in previously coronavirus disease 2019 (COVID-19)-infected individuals (NCT04743388). Transient increases in interleukin-15 (IL-15) and interferon gamma (IFN-γ) levels early after boost correlate with Spike antibody levels, supporting their use as biomarkers of effective humoral immunity development in response to vaccination. We identify a systemic signature including increases in IL-15, IFN-γ, and IP-10/CXCL10 after the 1st vaccination, which were enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the 2nd vaccination. In previously COVID-19-infected individuals, a single vaccination results in both strong cytokine induction and antibody titers similar to the ones observed upon booster vaccination in antigen-naive individuals, a result with potential implication for future public health recommendations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Quimiocina CXCL10/imunologia , Interferon gama/imunologia , Interleucina-15/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/metabolismo , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Imunidade/imunologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/imunologia
9.
Eur J Intern Med ; 89: 87-96, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34053848

RESUMO

Elucidating the characteristics of human immune response against SARS-CoV-2 is of high priority and relevant for determining vaccine strategies. We report the results of a follow-up evaluation of anti-SARS-CoV-2 antibodies in 148 convalescent plasma donors who participated in a phase 2 study at a median of 8.3 months (range 6.8-10.5 months) post first symptom onset. Monitoring responses over time, we found contraction of antibody responses for all four antigens tested, with Spike antibodies showing higher persistence than Nucleocapsid antibodies. A piecewise linear random-effects multivariate regression analysis showed a bi-phasic antibody decay with a more pronounced decrease during the first 6 months post symptoms onset by analysis of two intervals. Interestingly, antibodies to Spike showed better longevity whereas their neutralization ability contracted faster. As a result, neutralizing antibodies were detected in only 76% of patients at the last time point. In a multivariate analysis, older age and hospitalization were independently associated with higher Spike, Spike-RBD, Nucleocapsid, N-RBD antibodies and neutralizing antibody levels. Results on persistence and neutralizing ability of anti-SARS-CoV-2 antibodies, especially against Spike and Spike-RBD, should be considered in the design of future vaccination strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , Cinética , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
10.
Microorganisms ; 9(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920489

RESUMO

COVID-19 is a global pandemic associated with increased morbidity and mortality. Convalescent plasma (CP) infusion is a strategy of potential therapeutic benefit. We conducted a multicenter phase II study to evaluate the efficacy and safety of CP in patients with COVID-19, grade 4 or higher. To evaluate the efficacy of CP, a matched propensity score analysis was used comparing the intervention (n = 59) to a control group (n = 59). Sixty patients received CP within a median time of 7 days from symptom onset. During a median follow-up of 28.5 days, 56/60 patients fully recovered and 1 patient remained in the ICU. The death rate in the CP group was 3.4% vs. 13.6% in the control group. By multivariate analysis, CP recipients demonstrated a significantly reduced risk of death [HR: 0.04 (95% CI: 0.004-0.36), p: 0.005], significantly better overall survival by Kaplan-Meir analysis (p < 0.001), and increased probability of extubation [OR: 30.3 (95% CI: 2.64-348.9), p: 0.006]. Higher levels of antibodies in the CP were independently associated with significantly reduced risk of death. CP infusion was safe with only one grade 3 adverse event (AE), which easily resolved. CP used early may be a safe and effective treatment for patients with severe COVID-19 (trial number NCT04408209).

11.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671252

RESUMO

Immunotherapy has emerged as a valuable strategy for the treatment of many cancer types. Interleukin-15 (IL-15) promotes the growth and function of cytotoxic CD8+ T and natural killer (NK) cells. It also enhances leukocyte trafficking and stimulates tumor-infiltrating lymphocytes expansion and activity. Bioactive IL-15 is produced in the body as a heterodimeric cytokine, comprising the IL-15 and the so-called IL-15 receptor alpha chain that are together termed "heterodimeric IL-15" (hetIL-15). hetIL-15, closely resembling the natural form of the cytokine produced in vivo, and IL-15:IL-15Rα complex variants, such as hetIL-15Fc, N-803 and RLI, are the currently available IL-15 agents. These molecules have showed favorable pharmacokinetics and biological function in vivo in comparison to single-chain recombinant IL-15. Preclinical animal studies have supported their anti-tumor activity, suggesting IL-15 as a general method to convert "cold" tumors into "hot", by promoting tumor lymphocyte infiltration. In clinical trials, IL-15-based therapies are overall well-tolerated and result in the expansion and activation of NK and memory CD8+ T cells. Combinations with other immunotherapies are being investigated to improve the anti-tumor efficacy of IL-15 agents in the clinic.

12.
Cell Rep ; 29(4): 932-945.e7, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644914

RESUMO

Local cues in the adult neurogenic niches dynamically regulate homeostasis in neural stem cells, whereas their identity and associated molecular mechanisms remain poorly understood. Here, we show that corticotropin-releasing hormone (CRH), the major mediator of mammalian stress response and a key neuromodulator in the adult brain, is necessary for hippocampal neural stem cell (hiNSC) activity under physiological conditions. In particular, we demonstrate functionality of the CRH/CRH receptor (CRHR) system in mouse hiNSCs and conserved expression in humans. Most important, we show that genetic deficiency of CRH impairs hippocampal neurogenesis, affects spatial memory, and compromises hiNSCs' responsiveness to environmental stimuli. These deficits have been partially restored by virus-mediated CRH expression. Additionally, we provide evidence that local disruption of the CRH/CRHR system reduces neurogenesis, while exposure of adult hiNSCs to CRH promotes neurogenic activity via BMP4 suppression. Our findings suggest a critical role of CRH in adult neurogenesis, independently of its stress-related systemic function.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Linhagem Celular , Células Cultivadas , Hormônio Liberador da Corticotropina/genética , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Memória Espacial
13.
JCI Insight ; 3(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29515042

RESUMO

Although accumulation of lymphocytes in the white adipose tissue (WAT) in obesity is linked to insulin resistance, it remains unclear whether lymphocytes also participate in the regulation of energy homeostasis in the WAT. Here, we demonstrate enhanced energy dissipation in Rag1-/- mice, increased catecholaminergic input to subcutaneous WAT, and significant beige adipogenesis. Adoptive transfer experiments demonstrated that CD8+ T cell deficiency accounts for the enhanced beige adipogenesis in Rag1-/- mice. Consistently, we identified that CD8-/- mice also presented with enhanced beige adipogenesis. The inhibitory effect of CD8+ T cells on beige adipogenesis was reversed by blockade of IFN-γ. All together, our findings identify an effect of CD8+ T cells in regulating energy dissipation in lean WAT, mediated by IFN-γ modulation of the abundance of resident immune cells and of local catecholaminergic activity. Our results provide a plausible explanation for the clinical signs of metabolic dysfunction in diseases characterized by altered CD8+ T cell abundance and suggest targeting of CD8+ T cells as a promising therapeutic approach for obesity and other diseases with altered energy homeostasis.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo Bege/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético/imunologia , Obesidade/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/imunologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Transferência Adotiva , Animais , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Obesidade/genética , Obesidade/imunologia
14.
Sci Adv ; 4(3): eaap9302, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536043

RESUMO

Monitoring subcellular functional and structural changes associated with metabolism is essential for understanding healthy tissue development and the progression of numerous diseases, including cancer, diabetes, and cardiovascular and neurodegenerative disorders. Unfortunately, established methods for this purpose either are destructive or require the use of exogenous agents. Recent work has highlighted the potential of endogenous two-photon excited fluorescence (TPEF) as a method to monitor subtle metabolic changes; however, mechanistic understanding of the connections between the detected optical signal and the underlying metabolic pathways has been lacking. We present a quantitative approach to detecting both functional and structural metabolic biomarkers noninvasively, relying on endogenous TPEF from two coenzymes, NADH (reduced form of nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide). We perform multiparametric analysis of three optical biomarkers within intact, living cells and three-dimensional tissues: cellular redox state, NADH fluorescence lifetime, and mitochondrial clustering. We monitor the biomarkers in cells and tissues subjected to metabolic perturbations that trigger changes in distinct metabolic processes, including glycolysis and glutaminolysis, extrinsic and intrinsic mitochondrial uncoupling, and fatty acid oxidation and synthesis. We demonstrate that these optical biomarkers provide complementary insights into the underlying biological mechanisms. Thus, when used in combination, these biomarkers can serve as a valuable tool for sensitive, label-free identification of changes in specific metabolic pathways and characterization of the heterogeneity of the elicited responses with single-cell resolution.


Assuntos
Imageamento Tridimensional/métodos , Metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular , Ácidos Graxos/biossíntese , Flavina-Adenina Dinucleotídeo/metabolismo , Fluorescência , Glutamina/metabolismo , Glicólise , Humanos , Metabolismo/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Oxirredução/efeitos dos fármacos
15.
Comp Med ; 68(1): 15-24, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29460717

RESUMO

Obesity is characterized as a chronic, low-grade inflammatory disease owing to the infiltration of the adipose tissue by macrophages. Although the role of macrophages in this process is well established, the role of lymphocytes in the development of obesity and metabolism remains less well defined. In the current study, we fed WT and Rag1-/- male mice, of C57BL/6J and BALB/c backgrounds, high-fat diet (HFD) or normal diet for 15 wk. Compared with WT mice, Rag1-/- mice of either of the examined strains were found less prone to insulin resistance after HFD, had higher metabolic rates, and used lipids more efficiently, as shown by the increased expression of genes related to fatty acid oxidation in epidydimal white adipose tissue. Furthermore, Rag1-/- mice had increased Ucp1 protein expression and associated phenotypic characteristics indicative of beige adipose tissue in subcutaneous white adipose tissue and increased Ucp1 expression in brown adipose tissue. As with inflammatory and other physiologic responses previously reported, the responses of mice to HFD show strain-specific differences, with increased susceptibility of C57BL/6J as compared with BALB/c strain. Our findings unmask a crucial role for lymphocytes in the development of obesity and insulin resistance, in that lymphocytes inhibit efficient dissipation of energy by adipose tissue. These strain-associated differences highlight important metabolic factors that should be accommodated in disease modeling and drug testing.


Assuntos
Resistência à Insulina/imunologia , Linfócitos/fisiologia , Obesidade/imunologia , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Suscetibilidade a Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Desacopladora 1/metabolismo
16.
Cell Rep ; 22(4): 895-904, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386132

RESUMO

Although Notch signaling has been proposed as a therapeutic target for type-2 diabetes, liver steatosis, and atherosclerosis, its direct effect on pancreatic islets remains unknown. Here, we demonstrated a function of Dll4-Notch signaling inhibition on the biology of insulin-producing cells. We confirmed enhanced expression of key Notch signaling genes in purified pancreatic islets from diabetic NOD mice and showed that treatment with anti-Dll4 antibody specifically abolished Notch signaling pathway activation. Furthermore, we showed that Notch inhibition could drive proliferation of ß-islet cells and confer protection from the development of STZ-induced diabetes. Importantly, inhibition of the Dll4 pathway in WT mice increased insulin secretion by inducing the differentiation of pancreatic ß-islet cell progenitors, as well as the proliferation of insulin-secreting cells. These findings reveal a direct effect of Dll4-blockade on pancreatic islets that, in conjunction with its immunomodulatory effects, could be used for unmet medical needs hallmarked by inefficient insulin action.


Assuntos
Secreção de Insulina/genética , Receptor Notch4/genética , Animais , Diferenciação Celular , Camundongos , Camundongos Endogâmicos NOD , Transdução de Sinais
17.
Sci Rep ; 6: 31012, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27491409

RESUMO

Current methods for evaluating adipose tissue function are destructive or have low spatial resolution. These limit our ability to assess dynamic changes and heterogeneous responses that occur in healthy or diseased subjects, or during treatment. Here, we demonstrate that intrinsic two-photon excited fluorescence enables functional imaging of adipocyte metabolism with subcellular resolution. Steady-state and time-resolved fluorescence from intracellular metabolic co-factors and lipid droplets can distinguish the functional states of excised white, brown, and cold-induced beige fat. Similar optical changes are identified when white and brown fat are assessed in vivo. Therefore, these studies establish the potential of non-invasive, high resolution, endogenous contrast, two-photon imaging to identify distinct adipose tissue types, monitor their functional state, and characterize heterogeneity of induced responses.


Assuntos
Adipócitos/fisiologia , Tecido Adiposo/fisiologia , Imagem Óptica/métodos , Humanos
18.
Obesity (Silver Spring) ; 17(10): 1830-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19543211

RESUMO

Anandamide (N-arachidonoylethanolamine, AEA) or its metabolites participate in energy balance mainly through feeding modulation. In addition, AEA has been found to increase 3T3-L1 adipocyte differentiation process. In this study, the effect of AEA, R(+)-methanandamide (R(+)-mAEA), URB597, and indomethacin on primary rat adipocyte differentiation was evaluated by a flow cytometry method and by Oil Red-O staining. Reverse transcription-PCR and western blotting analysis were performed in order to study the effect of AEA on peroxisome proliferator-activated receptor (PPAR)gamma2, cannabinoid receptors (CBRs), fatty acid amidohydrolase (FAAH), and cyclooxygenase-2 (COX-2) expression, during the differentiation process. AEA increased adipocyte differentiation in primary cell cultures in a concentration- and time-dependent manner and induced PPARgamma2 gene expression, confirming findings with 3T3-L1 cell line. CB1R, FAAH, and COX-2 expression was also increased while CB2R expression was decreased. Inhibition of FAAH and COX-2 attenuated the AEA-induced differentiation. Our findings indicate that AEA regulates energy homeostasis not only by appetite modulation but may also regulate adipocyte differentiation and phenotype.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , PPAR gama/biossíntese , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide/biossíntese , Adipócitos/citologia , Adipócitos/enzimologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Amidoidrolases/biossíntese , Amidoidrolases/genética , Animais , Benzamidas/farmacologia , Western Blotting , Carbamatos/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/fisiologia , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Indometacina/farmacologia , Masculino , PPAR gama/genética , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos
19.
J Inorg Biochem ; 103(5): 859-68, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19342100

RESUMO

Two new mononuclear peroxo complexes of tungsten of the formula (gu)(2)[WO(2)(O(2))(2)] (1) and (gu)[WO(O(2))(2)(quin-2-c)] (2a) (where gu(+)=guanidinium ion, CN(3)H(6)(+) and quin-2-c=quinoline-2-carboxylate ion) have been synthesized and characterized by elemental analysis, infrared, Raman, UV-visible and (1)H NMR spectroscopies. The crystal structure of (gu)[WO(O(2))(2)(quin-2-c)].H(2)O (2b) determined by X-ray diffraction indicates that the side-on peroxo groups and the bidentate quinaldate ligand bind the W(VI) centre leading to an hepta coordination mode. The guanidinium ion occurring as a counterion and the hydrogen-bound interactions stabilize the complexes. The in vitro insulin-mimetic effect of the complexes has been evaluated by the inhibitory effect on free fatty acid release in isolated fat adipocytes treated with epinephrine. Moreover the niobate analogues, synthesized and characterized previously, (gu)(3)[Nb(O(2))(4)] and (gu)(2)[Nb(O(2))(3)(quin-2-c)].H(2)O have been tested for the insulin-like activity.


Assuntos
Insulina/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Compostos de Tungstênio/química , Compostos de Tungstênio/síntese química , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células Cultivadas , Cristalografia por Raios X , Ácidos Graxos não Esterificados/metabolismo , Espectroscopia de Ressonância Magnética , Nióbio/química , Quinolinas/química , Quinolinas/farmacologia , Ratos , Análise Espectral Raman , Compostos de Tungstênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...