Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(24): 39624-39637, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041279

RESUMO

Dark modes represent a class of forbidden transitions or transitions with weak dipole moments between energy states. Due to their low transition probability, it is difficult to realize their interaction with light, let alone achieve the strong interaction of the modes with the photons in a cavity. However, by mutual coupling with a bright mode, the strong interaction of dark modes with photons is possible. This type of mediated interaction is widely investigated in the metamaterials community and is known under the term electromagnetically induced transparency (EIT). Here, we report strong coupling between a plasmonic dark mode of an EIT-like metamaterial with the photons of a 1D photonic crystal cavity in the terahertz frequency range. The coupling between the dark mode and the cavity photons is mediated by a plasmonic bright mode, which is proven by the observation of a frequency splitting which depends on the strength of the inductive interaction between the plasmon bright and dark modes of the EIT-like metamaterial. In addition, since the plasmonic dark mode strongly couples with the cavity dark mode, we observes four polariton modes. The frequency splitting by interaction of the four modes (plasmonic bright and dark mode and the two eigenmodes of the photonic cavity) can be reproduced in the framework of a model of four coupled harmonic oscillators.

2.
Phys Rev Lett ; 123(6): 067403, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491152

RESUMO

A class of plasmonic metasurfaces is introduced with the ability to tailor the dispersion surface of the associated plasmon-polariton into striking novel shapes. Examples include dispersion surfaces with hyperbolic curves, with multiple van Hove singularities of various types or with points of simultaneous spatiotemporal dispersion cancellation leading to unprecedented surface flatness. The latter effect, unseen before in linear passive systems, implies slow propagation of ultrasubwavelength wave packets of any shape devoid of longitudinal or lateral broadening, limited only by absorption.

3.
Sci Rep ; 7(1): 14046, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070865

RESUMO

Transparent conducting electrodes play a fundamental role in far-field PhotoVoltaic systems, but have never been thoroughly investigated for near-field applications. Here we show, in the context of near-field planar ultra-thin ThermoPhotoVoltaic cells using surface-plasmon-polariton thermal emitters, that the resonant nature of the nanophotonic system significantly alters the design criteria for the necessary conducting front electrode. The traditional ratio of optical-to-DC conductivities is alone not an adequate figure of merit, instead the desired impedance matching between the emitter and absorber modes along with their coupling to the free-carrier resonance of the front electrode are key for optimal device design and performance. Moreover, we demonstrate that conducting electrodes 'opaque' to incoming far-field radiation can, in fact, be used in the near field with decent performance by taking advantage of evanescent photon tunneling from the emitter to the absorber. Finally, we identify and compare appropriate tunable-by-doping materials for front electrodes in near-field ThermoPhotoVoltaics, specifically molybdenum-doped indium oxide, dysprosium-doped cadmium oxide, graphene and diffused semiconductors, but also for 'opaque' electrodes, tin-doped indium oxide and silver nano-films. Predicted estimated performances include output power density ~10 W/cm 2 with >45% efficiency at 2100 °K emitter temperature and 60 Ω electrode square resistance, thus increasing the promise for high-performance practical devices.

4.
Sci Rep ; 6: 28472, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363522

RESUMO

We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.

5.
Phys Rev Lett ; 103(4): 043906, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19659357

RESUMO

A material platform of multilayered surface-plasmon-dielectric-polariton systems is introduced, along with a new physical mechanism enabling simultaneous cancellation of group-velocity and attenuation dispersion to extremely high orders for subwavelength light of any small positive, negative, or zero group velocity. These dispersion-free systems could have significant impact on the development of nanophotonics, e.g., in the design of efficient and very compact delay lines and active devices. The same dispersion-manipulation mechanism can be employed to tailor at will exotic slow-light dispersion relations.

6.
Science ; 317(5834): 83-6, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17556549

RESUMO

Using self-resonant coils in a strongly coupled regime, we experimentally demonstrated efficient nonradiative power transfer over distances up to 8 times the radius of the coils. We were able to transfer 60 watts with approximately 40% efficiency over distances in excess of 2 meters. We present a quantitative model describing the power transfer, which matches the experimental results to within 5%. We discuss the practical applicability of this system and suggest directions for further study.

7.
Phys Rev Lett ; 95(6): 063901, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16090954

RESUMO

A class of axially uniform waveguides is introduced, employing a new mechanism to guide light inside a low-index dielectric material without the use of photonic band gap, and simultaneously exhibiting subwavelength modal size and very slow group velocity over an unusually large frequency bandwidth. Their basis is the presence of plasmonic modes on the interfaces between dielectric regions and the flat unpatterned surface of a bulk metallic substrate. These novel waveguides allow for easy broadband coupling and exhibit absorption losses limited only by the intrinsic loss of the metal.

8.
Opt Lett ; 29(19): 2309-11, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524390

RESUMO

A mechanism to reduce radiation loss from integrated optical cavities without a complete photonic bandgap is introduced and demonstrated. It is applicable to any device with a patterned substrate (including both low and high index-contrast systems), when it supports discrete guided or leaky modes through which power escaping the cavity can be channeled into radiation. One then achieves the associated increase in Q by designing the cavity such that the near-field pattern becomes orthogonal to these discrete modes, therefore canceling the coupling of power into them and thus reducing the total radiation loss. The method is independent of any delocalization mechanism and can be used to create high-Q cavities with small modal volume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...