Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 935-946, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38133817

RESUMO

Magnetite is a common mixed Fe(II,III) iron oxide in mineral deposits and the product of (anaerobic) iron corrosion. In various Earth systems, magnetite surfaces participate in surface-mediated redox reactions. The reactivity and redox properties of the magnetite surface depend on the surface speciation, which varies with environmental conditions. In this study, Kohn-Sham density functional theory (DFT + U method) was used to examine the stability and speciation of the prevalent magnetite crystal face {111} in a wide range of pH and Eh conditions. The simulations reveal that the oxidation state and speciation of the surface depend strongly on imposed redox conditions and, in general, may differ from those of the bulk state. Corresponding predominant phase diagrams for the surface speciation and structure were calculated from first principles. Furthermore, classical molecular dynamics simulations were conducted investigating the mobility of water near the magnetite surface. The obtained knowledge of the surface structure and oxidation state of iron is essential for modeling retention of redox-sensitive nuclides.


Assuntos
Óxido Ferroso-Férrico , Ferro , Óxido Ferroso-Férrico/química , Ferro/química , Oxirredução , Minerais , Água
2.
J Phys Chem C Nanomater Interfaces ; 127(29): 14425-14438, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37529667

RESUMO

Clays and clay rocks are considered good natural and engineered barriers for deep geological disposal of nuclear waste worldwide. Metal corrosion and organic waste degradation in underground repositories generate significant amounts of gas that should be able to migrate through the multibarrier system to avoid potential pressure buildup, which could be compromising the integrity of the barriers and host rocks. The gas is expected to accumulate in larger pores and eventually form an interconnected network. Under such conditions, the migration of gas molecules takes place both in pore water films and gas-filled macropores. Therefore, mass fluxes depend on the distribution of gas molecules between the water-rich and gas-rich phases and their mobility in both compartments. Classical molecular dynamics (MD) simulations were employed to investigate the mobilities of He, H2, CO2, Ar, and CH4 in a Na-montmorillonite mesopore as a function of the degree of saturation, as well as evaluate the hydrodynamic behavior of the pore fluid in partially saturated clays. The diffusivity of the gas molecules was determined by observing the asymptotic behavior of the mean square displacement in the gas-rich phase and at the gas-water interface. The partition coefficient and Gibbs free energy were analyzed to investigate the transfer of gas molecules between the gas-rich and water-rich phases by observing the molecular trajectories as they cross the vapor-liquid interface. The results revealed that the diffusion coefficient in the gas phase increased with increasing gas-filled pore width and converged asymptotically toward the diffusion coefficient in the bulk state. It could be shown that the diffusion coefficient of gas molecules dissolved in the water films remained constant as long as the interacting water surface was in the bulk-liquid-like phase. This behavior changes in very thin water films. It was observed that the partitioning coefficient of gas molecules at the solid-liquid interface is nearly the same as that in the bulk-liquid-like phase. Partitioning is observed to be strongly dependent on the temperature and gas molecular weights. In the second part of the study, nonequilibrium molecular dynamics (NEMD) simulations were performed to investigate the mobility of gases in pressure-driven decoupled gas-phase dynamics (DGPD) and coupled gas and water phase dynamics (CGWPD) in a partially saturated Na-montmorillonite slit mesopore. The dynamic viscosity of the gas phase was calculated from NEMD simulations and indicated that the viscosity of the gas phase was almost the same in both methods (DGPD and CGWPD). The average slip length for gas molecules at the gas-water interface was also calculated, revealing that the slip-free boundary condition assumed in continuum models is generally invalid for microfluidics and that a slip boundary condition exists at the microscale for specific surface interactions. Finally, a Bosanquet-type equation was developed to predict the diffusion coefficient and dynamic viscosity of gas as a function of the average pore width, gas mean-free path, geometric factor, and thickness of the adsorbed water film.

3.
Sci Rep ; 11(1): 19858, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615926

RESUMO

Water boiling control evolution of natural geothermal systems is widely exploited in industrial processes due to the unique non-linear thermophysical behavior. Even though the properties of water both in the liquid and gas state have been extensively studied experimentally and by numerical simulations, there is still a fundamental knowledge gap in understanding the mechanism of the heterogeneous nucleate boiling controlling evaporation and condensation. In this study, the molecular mechanism of bubble nucleation at the hydrophilic and hydrophobic solid-water interface was determined by performing unbiased molecular dynamics simulations using the transition path sampling scheme. Analyzing the liquid to vapor transition path, the initiation of small void cavities (vapor bubbles nuclei) and their subsequent merging mechanism, leading to successively growing vacuum domains (vapor phase), has been elucidated. The molecular mechanism and the boiling nucleation sites' location are strongly dependent on the solid surface hydrophobicity and hydrophilicity. Then simulations reveal the impact of the surface functionality on the adsorbed thin water molecules film structuring and the location of high probability nucleation sites. Our findings provide molecular-scale insights into the computational aided design of new novel materials for more efficient heat removal and rationalizing the damage mechanisms.

4.
Adv Sci (Weinh) ; 8(3): 2002312, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552857

RESUMO

Supercritical fluid pseudo-boiling (PB), recently brought to the attention of the scientific community, is the phenomenon occurring when fluid changes its structure from liquid-like (LL) to gas-like (GL) states across the Widom line. This work provides the first quantitative analysis on the thermodynamics and the dynamics of water's PB, since the understanding of this phase transition is mandatory for the successful implementation of technologies using supercritical water (scH2O) for environmental, energy, and nanomaterial applications. The study combines computational techniques with in situ neutron imaging measurements. The results demonstrate that, during isobaric heating close to the critical point, while water density drops by a factor of three in the PB transitional region, the system needs >16 times less energy to increase its temperature by 1 K than to change its structure from LL to GL phase. Above the PB-Widom line, the structure of LL water consists mainly of tetramers and trimers, while below the line mostly dimers and monomers form in the GL phase. At atomic level, the PB dynamics are similar to those of the subcritical water vaporization. This fundamental knowledge has great impact on water science, as it helps to establish the structure-properties relationship of scH2O.

5.
Sci Rep ; 9(1): 15731, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673024

RESUMO

Supercritical water is used in a variety of chemical and industrial applications. As a consequence, a detailed knowledge of the structure-properties correlations is of uttermost importance. Although supercritical water was considered as a homogeneous fluid, recent studies revealed an anomalous behaviour due to nanoscale density fluctuations (inhomogeneity). The inhomogeneity is clearly demarked through the Widom line (maxima in response factions) and drastically affect the properties. In the current study the physical properties of supercritical water have been determined by classical molecular dynamics simulations using a variety of polarized and polarizable interatomic potentials. Their validity which was not available at supercritical conditions has been assessed based on the ability to reproduce experimental data. Overall, the polarized TIP4P/2005 model accurately predicted the properties of water in both liquid-like and gas-like regions. All interatomic potentials captured the anomalous behaviour providing a direct evidence of molecular-scale inhomogeneity.

6.
Nat Commun ; 10(1): 4114, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530816

RESUMO

Supercritical water is a green solvent used in many technological applications including materials synthesis, nuclear engineering, bioenergy, or waste treatment and it occurs in nature. Despite its relevance in natural systems and technical applications, the supercritical state of water is still not well understood. Recent theories predict that liquid-like (LL) and gas-like (GL) supercritical water are metastable phases, and that the so-called Widom line zone is marking the crossover between LL and GL behavior of water. With neutron imaging techniques, we succeed to monitor density fluctuations of supercritical water while the system evolves rapidly from LL to GL as the Widom line is crossed during isobaric heating. Our observations show that the Widom line of water can be identified experimentally and they are in agreement with the current theory of supercritical fluid pseudo-boiling. This fundamental understanding allows optimizing and developing new technologies using supercritical water as a solvent.

7.
Br J Radiol ; 92(1103): 20190345, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31453718

RESUMO

OBJECTIVE: To compare image quality and breast density of two reconstruction methods, the widely-used filtered-back projection (FBP) reconstruction and the iterative heuristic Bayesian inference reconstruction (Bayesian inference reconstruction plus the method of total variation applied, HBI). METHODS: Thirty-two clinical DBT data sets with malignant and benign findings, n = 27 and 17, respectively, were reconstructed using FBP and HBI. Three experienced radiologists evaluated the images independently using a 5-point visual grading scale and classified breast density according to the American College of Radiology Breast Imaging-Reporting And Data System Atlas, fifth edition. Image quality metrics included lesion conspicuity, clarity of lesion borders and spicules, noise level, artifacts surrounding the lesion, visibility of parenchyma and breast density. RESULTS: For masses, the image quality of HBI reconstructions was superior to that of FBP in terms of conspicuity,clarity of lesion borders and spicules (p < 0.01). HBI and FBP were not significantly different in calcification conspicuity. Overall, HBI reduced noise and supressed artifacts surrounding the lesions better (p < 0.01). The visibility of fibroglandular parenchyma increased using the HBI method (p < 0.01). On average, five cases per radiologist were downgraded from BI-RADS breast density category C/D to A/B. CONCLUSION: HBI significantly improves lesion visibility compared to FBP. HBI-visibility of breast parenchyma increased, leading to a lower breast density rating. Applying the HBIR algorithm should improve the diagnostic performance of DBT and decrease the need for additional imaging in patients with dense breasts. ADVANCES IN KNOWLEDGE: Iterative heuristic Bayesian inference (HBI) image reconstruction substantially improves the image quality of breast tomosynthesis leading to a better visibility of breast carcinomas and reduction of the perceived breast density compared to the widely-used filtered-back projection (FPB) reconstruction. Applying HBI should improve the accuracy of breast tomosynthesis and reduce the number of unnecessary breast biopsies. It may also reduce the radiation dose for the patients, which is especially important in the screening context.


Assuntos
Densidade da Mama/fisiologia , Neoplasias da Mama/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Artefatos , Teorema de Bayes , Neoplasias da Mama/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Mamografia/métodos , Mamografia/normas , Pessoa de Meia-Idade , Estudos Retrospectivos , Carga Tumoral
8.
MethodsX ; 6: 601-605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984568

RESUMO

The inference of amorphous bulk density, while straightforward for nonporous, soluble materials, may present a formidable challenge in some of the most important classes of industrial applications, involving melts, porous solids, and non-soluble organic pharmaceuticals, with varied implications depending on the material's level of technological interest. Within nanotechnology and the life sciences in particular, accurate determination of amorphous true density is a frequent requirement and a regular puzzle, when, e.g., neither the Archimedean principle nor gas pycnometry may be applied, the former being only applicable to insoluble compounds, while the latter yielding skeletal density - an overestimate of true density to the extent of blind pores - and its efficiency is affected by the choice of the gas medium. In these cases, it is feasible to infer amorphous density from diffraction experiments through the use of the reduced Pair Distribution Function (PDF). Although an estimate of crystalline density has been known to be possible via the PDF shape, here we outline a new method extending this facility to include the estimation of amorphous density. •Amorphous density may be inferred from the position of a local minimum of the reduced PDF profile, the latter extracted via a Fourier transformation of collected diffraction intensity.•The PDF minimum is located within the PDF range bounded by rmin = 2π/Qmax and the position of the first coordination peak, where Qmax is the maximum length of the scattering vector achieved in the diffraction experiment.•Amorphous density is calculated as the ratio of the value of the reduced PDF at the local minimum, divided by the term 4πr, where r is the real space coordinate of the local minimum.

10.
Sci Rep ; 6: 30216, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27455915

RESUMO

The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273-2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09-87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m(3) vs. an experimental value of 2940 kg/m(3)) and for electrical conductivity (5.3-233 S/m within a temperature range of 1273.15-2273.15 K).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...