Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 39(4): 765-773, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816803

RESUMO

Objective- To determine the role of a cytokine-like protein DKK3 (dikkopf-3) in directly transdifferentiating fibroblasts into endothelial cells (ECs) and the underlying mechanisms. Approach and Results- DKK3 overexpression in human fibroblasts under defined conditions for 4 days led to a notable change in cell morphology and progenitor gene expression. It was revealed that these cells went through mesenchymal-to-epithelial transition and subsequently expressed KDR (kinase insert domain receptor) at high levels. Further culture in EC defined media led to differentiation of these progenitors into functional ECs capable of angiogenesis both in vitro and in vivo, which was regulated by the VEGF (vascular endothelial growth factor)/miR (microRNA)-125a-5p/Stat3 (signal transducer and activator of transcription factor 3) axis. More importantly, fibroblast-derived ECs showed the ability to form a patent endothelium-like monolayer in tissue-engineered vascular grafts ex vivo. Conclusions- These data demonstrate that DKK3 is capable of directly differentiating human fibroblasts to functional ECs under defined media and provides a novel potential strategy for endothelial regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Transdiferenciação Celular/fisiologia , Células Endoteliais/citologia , Fibroblastos/efeitos dos fármacos , Animais , Reatores Biológicos , Células Cultivadas , Meios de Cultura , Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos/citologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/fisiologia , Neovascularização Fisiológica , Proteínas Recombinantes/biossíntese , Fator de Transcrição STAT3/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
2.
Arterioscler Thromb Vasc Biol ; 38(2): 425-437, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29284609

RESUMO

OBJECTIVE: DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS: In the present study, we used a murine model of atherosclerosis (ApoE-/-) in conjunction with DKK3-/- and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1+ (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-ß (transforming growth factor-ß)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS: Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.


Assuntos
Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Estenose das Carótidas/metabolismo , Transdiferenciação Celular , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Células-Tronco/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Ataxina-1/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Estenose das Carótidas/genética , Estenose das Carótidas/patologia , Células Cultivadas , Quimiocinas , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Hemorragia/genética , Hemorragia/metabolismo , Hemorragia/patologia , Hemorragia/prevenção & controle , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Coelhos , Células-Tronco/patologia , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt
3.
Stem Cell Reports ; 9(2): 681-696, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28757161

RESUMO

Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient) mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.


Assuntos
Ataxina-1/genética , Movimento Celular/genética , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Células-Tronco/metabolismo , Animais , Apolipoproteínas E/deficiência , Ataxina-1/metabolismo , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Diferenciação Celular/genética , LDL-Colesterol/metabolismo , Biologia Computacional/métodos , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Hiperlipidemias/sangue , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco/citologia
4.
Circulation ; 136(11): 1022-1036, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28674110

RESUMO

BACKGROUND: Dickkopf-related protein 3 (DKK3) is a secreted protein that is involved in the regulation of cardiac remodeling and vascular smooth muscle cell differentiation, but little is known about its role in atherosclerosis. METHODS: We tested the hypothesis that DKK3 is atheroprotective using both epidemiological and experimental approaches. Blood DKK3 levels were measured in the Bruneck Study in 2000 (n=684) and then in 2005 (n=574). DKK3-deficient mice were crossed with apolipoprotein E-/- mice to evaluate atherosclerosis development and vessel injury-induced neointimal formation. Endothelial cell migration and the underlying mechanisms were studied using in vitro cell culture models. RESULTS: In the prospective population-based Bruneck Study, the level of plasma DKK3 was inversely related to carotid artery intima-media thickness and 5-year progression of carotid atherosclerosis independently from standard risk factors for atherosclerosis. Experimentally, we analyzed the area of atherosclerotic lesions, femoral artery injury-induced reendothelialization, and neointima formation in both DKK3-/-/apolipoprotein E-/- and DKK3+/+/apolipoprotein E-/- mice. It was demonstrated that DKK3 deficiency accelerated atherosclerosis and delayed reendothelialization with consequently exacerbated neointima formation. To explore the underlying mechanisms, we performed transwell and scratch migration assays using cultured human endothelial cells, which exhibited a significant induction in cell migration in response to DKK3 stimulation. This DKK3-induced migration activated ROR2 and DVL1, activated Rac1 GTPases, and upregulated JNK and c-jun phosphorylation in endothelial cells. Knockdown of the ROR2 receptor using specific siRNA or transfection of a dominant-negative form of Rac1 in endothelial cells markedly inhibited cell migration and downstream JNK and c-jun phosphorylation. CONCLUSIONS: This study provides the evidence for a role of DKK3 in the protection against atherosclerosis involving endothelial migration and repair, with great therapeutic potential implications against atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Citocinas/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Idoso de 80 Anos ou mais , Animais , Espessura Intima-Media Carotídea/tendências , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Quimiocinas , Citocinas/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neointima/metabolismo , Neointima/prevenção & controle , Estudos Prospectivos
5.
Stem Cells ; 34(9): 2368-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27300479

RESUMO

Recent studies have shown that Sca-1(+) (stem cell antigen-1) stem/progenitor cells within blood vessel walls may contribute to neointima formation, but the mechanism behind their recruitment has not been explored. In this work Sca-1(+) progenitor cells were cultivated from mouse vein graft tissue and found to exhibit increased migration when cocultured with smooth muscle cells (SMCs) or when treated with SMC-derived conditioned medium. This migration was associated with elevated levels of chemokines, CCL2 (chemokine (C-C motif) ligand 2) and CXCL1 (chemokine (C-X-C motif) ligand 1), and their corresponding receptors on Sca-1(+) progenitors, CCR2 (chemokine (C-C motif) receptor 2) and CXCR2 (chemokine (C-X-C motif) receptor 2), which were also upregulated following SMC conditioned medium treatment. Knockdown of either receptor in Sca-1(+) progenitors significantly inhibited cell migration. The GTPases Cdc42 and Rac1 were activated by both CCL2 and CXCL1 stimulation and p38 phosphorylation was increased. However, only Rac1 inhibition significantly reduced migration and p38 phosphorylation. After Sca-1(+) progenitors labeled with green fluorescent protein (GFP) were applied to the adventitial side of wire-injured mouse femoral arteries, a large proportion of GFP-Sca-1(+) -cells were observed in neointimal lesions, and a marked increase in neointimal lesion formation was seen 1 week post-operation. Interestingly, Sca-1(+) progenitor migration from the adventitia to the neointima was abrogated and neointima formation diminished in a wire injury model using CCL2(-/-) mice. These findings suggest vascular stem/progenitor cell migration from the adventitia to the neointima can be induced by SMC release of chemokines which act via CCR2/Rac1/p38 and CXCR2/Rac1/p38 signaling pathways. Stem Cells 2016;34:2368-2380.


Assuntos
Movimento Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Antígenos Ly/metabolismo , Movimento Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Receptores CCR2 , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Stem Cells ; 34(5): 1225-38, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26867148

RESUMO

Deciphering the extracellular signals that regulate SMC differentiation from stem cells is vital to further our understanding of the pathogenesis of vascular disease and for development of cell-based therapies and tissue engineering. Hyaluronan (HA) has emerged as an important component of the stem cell niche, however its role during stem cell differentiation is a complicated and inadequately defined process. This study aimed to investigate the role of HA in embryonic stem cell (ESC) differentiation toward a SMC lineage. ESCs were seeded on collagen-IV in differentiation medium to generate ESC-derived SMCs (esSMCs). Differentiation coincided with increased HA synthase (HAS) 2 expression, accumulation of extracellular HA and its assembly into pericellular matrices. Inhibition of HA synthesis by 4-methylumbelliferone (4MU), removal of the HA coat by hyaluronidase (HYAL) or HAS2 knockdown led to abrogation of SMC gene expression. HA activates ERK1/2 and suppresses EGFR signaling pathways via its principle receptor, CD44. EGFR inactivation coincided with increased binding to CD44, which was further augmented by addition of high molecular weight (HMW)-HA either exogenously or via HAS2 overexpression through adenoviral gene transfer. HMW-HA-stimulated esSMCs displayed a functional role in vascular tissue engineering ex vivo, vasculogenesis in a matrigel plug model and SMC accumulation in neointimal lesions of vein grafts in mice. These findings demonstrate that HAS2-induced HA synthesis and organization drives ESC-SMC differentiation. Thus, remodeling of the HA microenvironment is a critical step in directing stem cell differentiation toward a vascular lineage, highlighting HA as a potential target for treatment of vascular diseases. Stem Cells 2016;34:1225-1238.


Assuntos
Diferenciação Celular , Linhagem da Célula , Ácido Hialurônico/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos de Músculo Liso/citologia , Animais , Ativação Enzimática , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Espaço Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Biológicos , Neointima/metabolismo , Neovascularização Fisiológica , Ligação Proteica , Regulação para Cima
7.
J Biol Chem ; 290(32): 19844-52, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26105053

RESUMO

Smooth muscle cells (SMCs) are a key component of healthy and tissue engineered vessels and play a crucial role in vascular development and the pathogenic events of vascular remodeling i.e. restenosis. However, the cell source from which they can be isolated is limited. Embryonic stem (ES) cells that have the remarkable capability to differentiate into vascular SMCs in response to specific stimuli provide a useful model for studying SMC differentiation. Previous studies suggested that dickkopf homolog 3 (DKK3) has a role in human partially induced pluripotent stem cell to SMC differentiation. Here, we demonstrate that the expression of DKK3 is essential for the expression of SMC markers and myocardin at both the mRNA and protein levels during mouse ES cell differentiation into SMCs (ESC-SMC differentiation). Overexpression of DKK3 leads to further up-regulation of the aforementioned markers. Further investigation indicates that DKK3 added as a cytokine activates activating transcription factor 6 (ATF6), leading to the increased binding of ATF6 on the myocardin promoter and increased its expression. In addition, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) promotes the expression of ATF6 and leads to further increase of myocardin transcription. Our findings offer a novel mechanism by which DKK3 regulates ESC-SMC differentiation by activating ATF6 and promoting myocardin expression.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Células-Tronco Embrionárias/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Fator 6 Ativador da Transcrição/agonistas , Fator 6 Ativador da Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Flavonoides/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Nucleares/agonistas , Proteínas Nucleares/química , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Transdução de Sinais , Transativadores/agonistas , Transativadores/química , Transativadores/genética
8.
J Physiol ; 593(14): 3013-30, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25952975

RESUMO

Vascular smooth muscle cells (SMCs), a major structural component of the vessel wall, not only play a key role in maintaining vascular structure but also perform various functions. During embryogenesis, SMC recruitment from their progenitors is an important step in the formation of the embryonic vascular system. SMCs in the arterial wall are mostly quiescent but can display a contractile phenotype in adults. Under pathophysiological conditions, i.e. vascular remodelling after endothelial dysfunction or damage, contractile SMCs found in the media switch to a secretory type, which will facilitate their ability to migrate to the intima and proliferate to contribute to neointimal lesions. However, recent evidence suggests that the mobilization and recruitment of abundant stem/progenitor cells present in the vessel wall are largely responsible for SMC accumulation in the intima during vascular remodelling such as neointimal hyperplasia and arteriosclerosis. Therefore, understanding the regulatory mechanisms that control SMC differentiation from vascular progenitors is essential for exploring therapeutic targets for potential clinical applications. In this article, we review the origin and differentiation of SMCs from stem/progenitor cells during cardiovascular development and in the adult, highlighting the environmental cues and signalling pathways that control phenotypic modulation within the vasculature.


Assuntos
Diferenciação Celular , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Animais , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
J Vis Exp ; (97)2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25867458

RESUMO

The construction of vascular conduits is a fundamental strategy for surgical repair of damaged and injured vessels resulting from cardiovascular diseases. The current protocol presents an efficient and reproducible strategy in which functional tissue engineered vessel grafts can be generated using partially induced pluripotent stem cell (PiPSC) from human fibroblasts. We designed a decellularized vessel scaffold bioreactor, which closely mimics the matrix protein structure and blood flow that exists within a native vessel, for seeding of PiPSC-endothelial cells or smooth muscle cells prior to grafting into mice. This approach was demonstrated to be advantageous because immune-deficient mice engrafted with the PiPSC-derived grafts presented with markedly increased survival rate 3 weeks after surgery. This protocol represents a valuable tool for regenerative medicine, tissue engineering and potentially patient-specific cell-therapy in the near future.


Assuntos
Prótese Vascular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células Endoteliais/citologia , Fibroblastos/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Modelos Animais , Miócitos de Músculo Liso/citologia , Alicerces Teciduais
10.
J Biol Chem ; 289(6): 3383-93, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356956

RESUMO

Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In this paper, we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in predifferentiated iPSCs induced EC marker up-regulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-ß2 mRNA and secreted protein level, consistent with the strong up-regulation of TGF-ß2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFß-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFß-2, strongly decreased VE-cadherin expression. Furthermore, TGFß-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21, and we showed that PTEN knockdown is required for miR-21-mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.


Assuntos
Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta2/biossíntese , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Células Endoteliais/citologia , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta2/genética , Regulação para Cima/fisiologia
11.
Arterioscler Thromb Vasc Biol ; 33(10): 2397-406, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23928863

RESUMO

OBJECTIVE: Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown. APPROACH AND RESULTS: Using an established technique, vascular progenitor cells were isolated from adventitial tissues of mouse vessel grafts and purified with microbeads specific for stem cell antigen-1. We provide evidence that vascular progenitor cells treated with sirolimus resulted in an induction of their migration in both transwell and wound healing models, clearly mediated by CXCR4 activation. We confirmed the sirolimus-mediated increase of migration from the adventitial into the intima side using an ex vivo decellularized vessel scaffold, where they form neointima-like lesions that expressed high levels of smooth muscle cell (SMC) markers (SM-22α and calponin). Subsequent in vitro studies confirmed that sirolimus can induce SMC but not endothelial cell differentiation of progenitor cells. Mechanistically, we showed that sirolimus-induced progenitor-SMC differentiation was mediated via epidermal growth factor receptor and extracellular signal-regulated kinase 1/2 activation that lead to ß-catenin nuclear translocation. The ablation of epidermal growth factor receptor, extracellular signal-regulated kinase 1/2, or ß-catenin attenuated sirolimus-induced SM-22α promoter activation and SMC differentiation. CONCLUSIONS: These findings provide direct evidence of sirolimus-induced progenitor cell migration and differentiation into SMC via CXCR4 and epidermal growth factor receptor/extracellular signal-regulated kinase/ß-catenin signal pathways, thus implicating a novel mechanism of restenosis formation after sirolimus-eluting stent treatment.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Túnica Adventícia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Sirolimo/farmacologia , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Células-Tronco Adultas/enzimologia , Túnica Adventícia/citologia , Túnica Adventícia/enzimologia , Animais , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Constrição Patológica , Ativação Enzimática , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/enzimologia , Interferência de RNA , Receptores CXCR4/agonistas , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Alicerces Teciduais , Transfecção , beta Catenina/genética , Calponinas
12.
Circ Res ; 112(11): 1433-43, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23529184

RESUMO

RATIONALE: Smooth muscle cells (SMCs) are a key component of tissue-engineered vessels. However, the sources by which they can be isolated are limited. OBJECTIVE: We hypothesized that a large number of SMCs could be obtained by direct reprogramming of fibroblasts, that is, direct differentiation of specific cell lineages before the cells reaching the pluripotent state. METHODS AND RESULTS: We designed a combined protocol of reprogramming and differentiation of human neonatal lung fibroblasts. Four reprogramming factors (OCT4, SOX2, KLF4, and cMYC) were overexpressed in fibroblasts under reprogramming conditions for 4 days with cells defined as partially-induced pluripotent stem (PiPS) cells. PiPS cells did not form tumors in vivo after subcutaneous transplantation in severe combined immunodeficiency mice and differentiated into SMCs when seeded on collagen IV and maintained in differentiation media. PiPS-SMCs expressed a panel of SMC markers at mRNA and protein levels. Furthermore, the gene dickkopf 3 was found to be involved in the mechanism of PiPS-SMC differentiation. It was revealed that dickkopf 3 transcriptionally regulated SM22 by potentiation of Wnt signaling and interaction with Kremen1. Finally, PiPS-SMCs repopulated decellularized vessel grafts and ultimately gave rise to functional tissue-engineered vessels when combined with previously established PiPS-endothelial cells, leading to increased survival of severe combined immunodeficiency mice after transplantation of the vessel as a vascular graft. CONCLUSIONS: We developed a protocol to generate SMCs from PiPS cells through a dickkopf 3 signaling pathway, useful for generating tissue-engineered vessels. These findings provide a new insight into the mechanisms of SMC differentiation with vast therapeutic potential.


Assuntos
Prótese Vascular , Fibroblastos/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/citologia , Miócitos de Músculo Liso/citologia , Células-Tronco Pluripotentes/citologia , Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Separação Celular/métodos , Quimiocinas , Feto/citologia , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Ativação Transcricional/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
13.
J Biol Chem ; 288(2): 859-72, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184933

RESUMO

Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3ß (LC3-ßII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3ß expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Proteínas de Ligação a DNA/genética , Endotélio Vascular/metabolismo , Proteínas de Membrana/genética , Splicing de RNA , RNA Mensageiro/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Animais , Sequência de Bases , Proteína Beclina-1 , Células Cultivadas , Imunoprecipitação da Cromatina , Primers do DNA , Endotélio Vascular/citologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 de Ligação a X-Box
14.
Proc Natl Acad Sci U S A ; 109(34): 13793-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869753

RESUMO

The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.


Assuntos
Reprogramação Celular , Células Endoteliais/citologia , Fibroblastos/metabolismo , Neovascularização Patológica , Engenharia Tecidual/métodos , Animais , Antígenos CD/genética , Aorta/patologia , Caderinas/genética , Diferenciação Celular , Células Cultivadas , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos SCID , Modelos Genéticos , Regiões Promotoras Genéticas , Células-Tronco/citologia , Estresse Mecânico
15.
Circ Res ; 106(7): 1202-11, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20224040

RESUMO

RATIONALE: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function. OBJECTIVE: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism. METHODS AND RESULTS: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of beta-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G(1) phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other beta-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased beta-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced beta-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to beta-catenin and forms a complex with 14-3-3 epsilon, zeta, and eta proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLCgamma-IP3K (phospholipase Cgamma-inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with beta-catenin, disrupting the complex and releasing beta-catenin to translocate into the nucleus. CONCLUSIONS: These findings demonstrate that HDAC7 interacts with beta-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth.


Assuntos
Proliferação de Células , Células Endoteliais/enzimologia , Histona Desacetilases/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Ativo do Núcleo Celular , Adenoviridae/genética , Ciclo Celular , Células Cultivadas , Ciclina D1/metabolismo , Ciclina E/metabolismo , Fator de Transcrição E2F2/metabolismo , Células Endoteliais/patologia , Vetores Genéticos , Histona Desacetilases/genética , Humanos , Hipertrofia , Imunoprecipitação , Proteína 2 Inibidora de Diferenciação/metabolismo , Espectrometria de Massas , Neovascularização Fisiológica , Proteínas Oncogênicas/metabolismo , Fosfolipase C gama/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...