Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(49): 41849-41854, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30461255

RESUMO

Organic-inorganic perovskite solar cells have attracted significant attention due to their remarkable performance. The use of alternative metal-oxide charge-transport layers is a strategy to improving device reliability for large-scale fabrication and long-term applications. Here, we report solution-processed perovskite solar cells employing nickel oxide hole-extraction layers produced in situ using an atmospheric pressure spatial atomic-layer deposition system, which is compatible with high-throughput processing of electronic devices from solution. Our sub-nanometer smooth (average roughness of ≤0.6 nm) oxide films enable the efficient collection of holes and the formation of perovskite absorbers with high electronic quality. Initial solar-cell experiments show a power-conversion efficiency of 17.1%, near-unity ideality factors, and a fill factor of >80% with negligible hysteresis. Transient measurements reveal that a key contributor to this performance is the reduced luminescence quenching trap density in the perovskite/nickel oxide structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA