RESUMO
Health systems, sanitation and water access have certain limitations in nations of Latin America (LA): typical matters of developing countries. Water is often contaminated and therefore unhealthy for the consumers and users. Information on prevalence and detection of waterborne parasitic protozoa are limited or not available in LA. Only few reports have documented in this field during the last forty years and Brazil leads the list, including countries in South America and Mexico within Central America region and Caribbean islands. From 1979 to 2015, 16 outbreaks of waterborne-protozoa, were reported in Latin American countries. T. gondii and C. cayetanensis were the protozoa, which caused more outbreaks and Giardia spp. and Cryptosporidium spp. were the most frequently found protozoa in water samples. On the other hand, Latin America countries have not got a coherent methodology for detection of protozoa in water samples despite whole LA is highly vulnerable to extreme weather events related to waterborne-infections; although Brazil and Colombia have some implemented laws in their surveillance systems. It would be important to coordinate all surveillance systems in between all countries for early detection and measures against waterborne-protozoan and to establish effective and suitable diagnosis tools according to the country's economic strength and particular needs.
Assuntos
Parasitos/isolamento & purificação , Microbiologia da Água , Poluentes da Água/isolamento & purificação , Animais , Mudança Climática , Monitoramento Ambiental , Humanos , América LatinaRESUMO
The loop-mediated isothermal amplification method (LAMP) is a recently developed molecular technique that amplifies nucleic acid under isothermal conditions. For malaria diagnosis, 150 blood samples from consecutive febrile malaria patients, and healthy subjects were screened in Thailand. Each sample was diagnosed by LAMP, microscopy and nested polymerase chain reaction (nPCR), using nPCR as the gold standard. Malaria LAMP was performed using Plasmodiumgenus and Plasmodium falciparum specific assays in parallel. For the genus Plasmodium, microscopy showed a sensitivity and specificity of 100%, while LAMP presented 99% of sensitivity and 93% of specificity. For P. falciparum, microscopy had a sensitivity of 95%, and LAMP of 90%, regarding the specificity; and microscopy presented 93% and LAMP 97% of specificity. The results of the genus-specific LAMP technique were highly consistent with those of nPCR and the sensitivity of P. falciparum detection was only marginally lower.