Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e8405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257629

RESUMO

There are many ways in which large carnivores and humans interact in shared spaces. In this study we provide insights into human-leopard relationships in an entirely modified, human-dominated landscape inhabited by dense populations of humans (266 per km2), their livestock (162 per km2) and relatively high densities of large predators (10 per 100 km2). No human deaths were recorded, and livestock losses to leopards numbered only 0.45 per km2per year (averaged over three years) despite the almost complete dependency of leopards on domestic animals as prey. Predation was not the major cause of livestock mortality as diseases and natural causes caused higher losses (80% of self-reported losses). We also found that ineffective night time livestock protection and the presence of domestic dogs increased the probability of a farmer facing leopard attacks on livestock. Resident farmers faced much lower livestock losses to leopard predation in contrast to the migratory shepherds who reported much higher losses, but rarely availed of the government compensation schemes. We recommend that local wildlife managers continue to shift from reactive measures such as leopard captures after livestock attacks to proactive measures such as focusing on effective livestock protection and informing the affected communities about safety measures to be taken where leopards occur in rural landscapes. The natural causes of livestock deaths due do diseases may be better prevented by involving animal husbandry department for timely vaccinations and treatment.

3.
PLoS One ; 8(3): e57872, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483933

RESUMO

Protected areas are extremely important for the long term viability of biodiversity in a densely populated country like India where land is a scarce resource. However, protected areas cover only 5% of the land area in India and in the case of large carnivores that range widely, human use landscapes will function as important habitats required for gene flow to occur between protected areas. In this study, we used photographic capture recapture analysis to assess the density of large carnivores in a human-dominated agricultural landscape with density >300 people/km(2) in western Maharashtra, India. We found evidence of a wide suite of wild carnivores inhabiting a cropland landscape devoid of wilderness and wild herbivore prey. Furthermore, the large carnivores; leopard (Panthera pardus) and striped hyaena (Hyaena hyaena) occurred at relatively high density of 4.8±1.2 (sd) adults/100 km(2) and 5.03±1.3 (sd) adults/100 km(2) respectively. This situation has never been reported before where 10 large carnivores/100 km(2) are sharing space with dense human populations in a completely modified landscape. Human attacks by leopards were rare despite a potentially volatile situation considering that the leopard has been involved in serious conflict, including human deaths in adjoining areas. The results of our work push the frontiers of our understanding of the adaptability of both, humans and wildlife to each other's presence. The results also highlight the urgent need to shift from a PA centric to a landscape level conservation approach, where issues are more complex, and the potential for conflict is also very high. It also highlights the need for a serious rethink of conservation policy, law and practice where the current management focus is restricted to wildlife inside Protected Areas.


Assuntos
Tamanho Corporal , Carnivoridade/fisiologia , Ecossistema , Felidae/anatomia & histologia , Agricultura , Animais , Conservação dos Recursos Naturais , Geografia , Humanos , Hyaenidae , Índia , Modelos Biológicos , Panthera , Densidade Demográfica , Especificidade da Espécie
4.
PLoS Biol ; 2(12): e442, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15583716

RESUMO

Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.


Assuntos
Tigres/genética , Alelos , Animais , Teorema de Bayes , Evolução Biológica , Análise por Conglomerados , Conservação dos Recursos Naturais , Primers do DNA/química , DNA Mitocondrial/metabolismo , Variação Genética , Genótipo , Geografia , Haplótipos , Complexo Principal de Histocompatibilidade/genética , Repetições de Microssatélites , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...