Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
World J Clin Cases ; 12(9): 1585-1596, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38576742

RESUMO

BACKGROUND: Cerebral palsy (CP) describes a group of disorders affecting movement, balance, and posture. Disturbances in motor functions constitute the main body of CP symptoms. These symptoms surface in early childhood and patients are affected for the rest of their lives. Currently, treatment involves various pharmacotherapies for different types of CP, including antiepileptics for epilepsy and Botox A for focal spasticity. However, none of these methods can provide full symptom relief. This has prompted researchers to look for new treatment modalities, one of which is mesenchymal stem cell therapy (MSCT). Despite being a promising tool and offering a wide array of possibilities, mesenchymal stem cells (MSCs) still need to be investigated for their efficacy and safety. AIM: To analyze the efficacy and safety of MSCT in CP patients. METHODS: Our sample consists of four CP patients who cannot stand or walk without external support. All of these cases received allogeneic MSCT six times as 1 × 106/kg intrathecally, intravenously, and intramuscularly using umbilical cord-derived MSCs (UC-MSC). We monitored and assessed the patients pre- and post-treatment using the Wee Functional Independence Measure (WeeFIM), Gross Motor Function Classification System (GMFCS), and Manual Ability Classification Scale (MACS) instruments. We utilized the Modified Ashworth Scale (MAS) to measure spasticity. RESULTS: We found significant improvements in MAS scores after the intervention on both sides. Two months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; four months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; 12 months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046. However, there was no significant difference in motor functions based on WeeFIM results (P > 0.05). GMFCS and MACS scores differed significantly at 12 months after the intervention (P = 0.046, P = 0.046). Finally, there was no significant change in cognitive functions (P > 0.05). CONCLUSION: In light of our findings, we believe that UC-MSC therapy has a positive effect on spasticity, and it partially improves motor functions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38459810

RESUMO

When the studies are evaluated, immunomodulatory effect of MSCs, administration in critically ill patients, obstacle situations in use and side effects, pulmonary fibrosis prevention, which stem cells and their products, regeneration effect, administration route, and dosage are listed under the main heading like. The effect of MSC administration on DNA repair genes in COVID-19 infection is unknown. Our aim is to determine the effect of mesenchymal stem cells (MSCs) therapy applied in critically ill patients with coronavirus infection on DNA repair pathways and genes associated with those pathways. Patients (n = 30) divided into two equal groups. Group-1: Patients in a critically ill condition, Group-2: Patients in critically ill condition and transplanted MSCs. The mechanism was investigated in eleven genes of five different pathways; Base excision repair: PARP1, Nucleotide excision repair (NER): RAD23B and ERCC1, Homologous recombinational repair (HR): ATM, RAD51, RAD52 and WRN, Mismatch repair (MMR): MLH1, MSH2, and MSH6, Direct reversal repair pathway: MGMT. It was found that MSCs application had a significant effect on 6 genes located in 3 different DNA damage response pathways. These are NER pathway genes; RAD23 and ERCC1, HR pathway genes; ATM and RAD51, MMR pathway genes; MSH2 and MSH6 (p < 0.05). Two main points were shown. First, as a result of cellular damage in critical patients with COVID-19, DNA damage occurs and then DNA repair pathways and genes are activated in reaction to this situation. Second, administration of MSC to patients with COVID-19 infection plays a positive role by increasing the expression of DNA repair genes located in DNA damage pathways.

3.
World J Stem Cells ; 16(1): 19-32, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38292440

RESUMO

BACKGROUND: Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses. Currently, there is a lack of effective pharmacological interventions for nerve damage, despite the existence of several small compounds, peptides, hormones, and growth factors that have been suggested as potential enhancers of neuron regeneration. Despite the objective of achieving full functional restoration by surgical intervention, the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries. AIM: To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage. METHODS: A male individual, aged 24, who is right-hand dominant and an immigrant, arrived with an injury caused by a knife assault. The cut is located on the left arm, specifically below the elbow. The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage. The sural autograft was utilized for repair, followed by the application of 1 mL of mesenchymal stem cell-derived exosome, comprising 5 billion microvesicles. This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway. The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing. RESULTS: The duration of the patient's follow-up period was 180 d. An increasing Tinel's sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting. Upon the conclusion of the 6-mo post-treatment period, an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve. This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale. The results indicated that the level of improvement in motor function was classified as M5, denoting an excellent outcome. Additionally, the level of improvement in sensory function was classified as S3+, indicating a good outcome. It is noteworthy that these assessments were conducted in the absence of physical therapy. At the 10th wk post-injury, despite the persistence of substantial axonal damage, the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography (EMG). In contrast to the preceding. EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up, indicating ongoing regeneration. CONCLUSION: Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage, as well as the experimental and therapy approaches delineated in this investigation, holds the potential to catalyze future clinical progress.

4.
Nurs Crit Care ; 29(1): 58-64, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37905845

RESUMO

BACKGROUND: Today, the use of cellular therapies as an effective treatment in the field of health is increasing. In the COVID-19 pandemic or similar situations, cellular therapies may be sometimes life-saving. The COVID-19 pandemic has shown us that the training of intensive care nurses in special cases, such as cellular therapies, is insufficient. AIM: The study aimed to determine the duties, responsibilities and training of intensive care nurses on mesenchymal stem cells (MSCs) transplantation to critically ill patients during the COVID-19 pandemic. STUDY DESIGN: This descriptive and retrospective study was conducted on 107 critically ill patients diagnosed with COVID-19 infection and followed up in the intensive care unit (ICU) between April 2020 and April 2022. Each patient was transplanted MSCs by intravenous infusion three times. Before starting cellular therapy applications, intensive care nurses were selected to work on this treatment modality. Each nurse was given theoretical and practical training by experienced instructors. RESULTS: Intensive care nurses trained for MSCs transplants took part in the pre-application, preparation, application and post-application period. MSCs were checked by the ICU nurses in the pre-application period. Patients' vital signs, existing catheters, consciousness status and parameters were checked by nurses in the preparation and application period. No side effects and complications were observed in patients during MSCs transplantation and within the first 24 h. Patients' late complications and mortality were recorded by nurses during the post-application periods. CONCLUSIONS: We recommend that nurses working especially in Level 3 ICUs receive training and certification in cellular therapies, especially in hospitals where advanced/cellular treatments are applied. RELEVANCE TO CLINICAL PRACTICE: Intensive care nurses are actively involved in every phase of the application of MSCs. Especially before such special practices, which came to the fore with the COVID-19 pandemic, training should be organized for intensive care nurses.


Assuntos
COVID-19 , Enfermeiras e Enfermeiros , Humanos , Estado Terminal/terapia , Pandemias , Estudos Retrospectivos , Cuidados Críticos , Unidades de Terapia Intensiva
5.
Stem Cell Rev Rep ; 20(1): 138-158, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955832

RESUMO

Duchenne Muscular Dystrophy (DMD) is an inherited genetic disorder characterized by progressive degeneration of muscle tissue, leading to functional disability and premature death. Despite extensive research efforts, the discovery of a cure for DMD continues to be elusive, emphasizing the need to investigate novel treatment approaches. Cellular therapies have emerged as prospective approaches to address the underlying pathophysiology of DMD. This review provides an examination of the present situation regarding cell-based therapies, including CD133 + cells, muscle precursor cells, mesoangioblasts, bone marrow-derived mononuclear cells, mesenchymal stem cells, cardiosphere-derived cells, and dystrophin-expressing chimeric cells. A total of 12 studies were found eligible to be included as they were completed cell therapy clinical trials, clinical applications, or case reports with quantitative results. The evaluation encompassed an examination of limitations and potential advancements in this particular area of research, along with an assessment of the safety and effectiveness of cell-based therapies in the context of DMD. In general, the available data indicates that diverse cell therapy approaches may present a new, safe, and efficacious treatment modality for patients diagnosed with DMD. However, further studies are required to comprehensively understand the most advantageous treatment approach and therapeutic capacity.


Assuntos
Células-Tronco Mesenquimais , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco Mesenquimais/metabolismo , Resultado do Tratamento , Terapia Baseada em Transplante de Células e Tecidos
6.
Tissue Cell ; 84: 102199, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633122

RESUMO

AIM: The study aimed to evaluate the differentiation ability of intravitreally injected rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) to retinal ganglion-like cells in a polystyrene microsphere induced rat glaucoma model. MATERIALS AND METHODS: The glaucoma rat model was generated via intracameral injection of 7 microliter polystyrene microspheres. Green fluorescence protein-labeled (GFP) rBM-MSCs were transplanted intravitreally at or after induction of ocular hypertension (OHT), depending on the groups. By the end of the fourth week, flat-mount retinal dissection was performed, and labeled against Brn3a, CD90, GFAP, CD11b, Vimentin, and localization of GFP positive rBM-MSCs was used for evaluation through immunofluorescence staining and to count differentiated retinal cells by flow cytometry. From 34 male Wistar albino rats, 56 eyes were investigated. RESULTS: Flow cytometry revealed significantly increased CD90 and Brn3a positive cells in glaucoma induced and with rBM-MSC injected groups compared to control(P = 0.006 and P = 0.003 respectively), sham-operated (P = 0.007 and P < 0.001 respectively), and only rBM-MSCs injected groups (P = 0.002 and P = 0.009 respectively). Immunofluorescence microscopy revealed differentiation of GFP labeled stem cells to various retinal cells, including ganglion-like cells. rBM-MSCs were observable in ganglion cells, inner and outer nuclear retinal layers in rBM-MSCs injected eyes. CONCLUSION: Intravitreally transplanted rBM-MSCs differentiated into retinal cells, including ganglion-like cells, which successfully created a glaucoma model damaged with polystyrene microspheres. Promisingly, MSCs may have a role in neuro-protection and neuro-regeneration treatment of glaucoma in the future.


Assuntos
Glaucoma , Células-Tronco Mesenquimais , Masculino , Ratos , Animais , Microesferas , Poliestirenos , Ratos Wistar , Glaucoma/induzido quimicamente , Glaucoma/terapia
7.
Ann Ital Chir ; 94: 179-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37227900

RESUMO

AIM: Several studies have been conducted for the prevention of neuroma and recently published experimental studies include interventions on epineurium. The techniques which include interventions on epinerium were compared to reveal the role of epinurium in neuroma prevention. MATERIAL E METHODS: 55 Sprague-Dawley rats were divided into five groups. Two of the groups were negative and positive controls. The proximal nerve stump was left "free" in the negative control group, while the stump was implanted in a muscle pocket in the positive control group following sciatic nerve transection. Experimental groups include epineural ligation, epineural stripping and epineural capping procedures. Follow-up period was six months. After sacrification of the rats, histopathologic and immunohistochemical examinations were conducted as well as real-time PCR studies for the assessment. Statistical analysis was performed. RESULTS: The most prominent neuroma formation was detected in the epineural capping group, while the least neuroma was observed in the epineural ligation group. DISCUSSION: Statistically significant differences were obtained when the three experimental groups were compared with both control groups. Interestingly there was no significant difference in-between the control groups in terms of preventing neuroma formation. CONCLUSION: epineural ligation group were found to be superior to both control groups as well as experimental groups. Use of epineural capping was concluded to increase the formation of neuroma rather than preventing. Intramuscular implantation of nerve stump had no preventive effect on neuroma formation. KEY WORDS: Capping, Epineurium, Ligation, Neuroma, Stripping.


Assuntos
Neuroma , Ratos , Animais , Ratos Sprague-Dawley , Neuroma/etiologia , Neuroma/prevenção & controle , Neuroma/cirurgia , Nervo Isquiático/cirurgia , Procedimentos Neurocirúrgicos/métodos , Ligadura
8.
Ann Ital Chir ; 122023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36789475

RESUMO

AIM: Several studies have been conducted for the prevention of neuroma and recently published experimental studies include interventions on epineurium. The techniques which include interventions on epinerium were compared to reveal the role of epinurium in neuroma prevention. MATERIAL E METHODS: 55 Sprague-Dawley rats were divided into five groups. Two of the groups were negative and positive controls. The proximal nerve stump was left "free" in the negative control group, while the stump was implanted in a muscle pocket in the positive control group following sciatic nerve transection. Experimental groups include epineural ligation, epineural stripping and epineural capping procedures. Follow-up period was six months. After sacrification of the rats, histopathologic and immunohistochemical examinations were conducted as well as real-time PCR studies for the assessment. Statistical analysis was performed. RESULTS: The most prominent neuroma formation was detected in the epineural capping group, while the least neuroma was observed in the epineural ligation group. DISCUSSION: Statistically significant differences were obtained when the three experimental groups were compared with both control groups. Interestingly there was no significant difference in-between the control groups in terms of preventing neuroma formation. CONCLUSION: epineural ligation group were found to be superior to both control groups as well as experimental groups. Use of epineural capping was concluded to increase the formation of neuroma rather than preventing. Intramuscular implantation of nerve stump had no preventive effect on neuroma formation. KEY WORDS: Capping, Epineurium, Ligation, Neuroma, Stripping.

9.
Brain Res ; 1799: 148170, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410427

RESUMO

The present study investigated the effects of intracerebral human-derived hair follicle stem cells (HFBSCs), whether alone or in combination with hydrogen sulfide (H2S) in a rat model of focal cerebral ischemia. The rats were randomly assigned into 4 groups (n = 10): Control (phosphate buffered saline (PBS)), Group A (at 24 h post-middle cerebral artery occlusion(MCAo), stereotaxic intracerebral, 1,0 × 106, total 10 µL HFBSCs), Group B (3-14 d post-MCAo, intraperitoneal (i.p.), 25 µM/kg/day H2S), Group AB (HFBSCs + H2S). Cranial magnetic resonance images were recorded on postoperative 1st and 28th days. Three dimensional analysis was performed to calculate the infarct volumes. Rotarod and cylinder tests were performed after MCAo and finally all rats were euthanized by cardiac perfusion at 28 days after MCAo for immunohistochemical analysis. The reduction in infarct volumes of rats receiving HFBSC was significant. The cranial infarct volume on the postoperative 28th day was significantly higher in the group in which H2S was administered alone compared to the HFBSC alone group. All animals showed steadily improved spontaneous locomotor activity from day 7 post-MCAo on rotarod test, from day 1 on cylinder test, but showed no significant differences at all times. In all groups, the grading scores of CD34, CD5, CD11b and GFAP immunohistochemical markers did not differ significantly. In conclusion, intracerebral HFBSC treatment after 24 h of ischemic stroke may be an effective way to reduce the cranial infarct volume, whereas H2S treatment alone or in combination with HFBSC may not be sufficient for ischemic brain injury.


Assuntos
Isquemia Encefálica , Sulfeto de Hidrogênio , Humanos , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Folículo Piloso/patologia , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/patologia , Células-Tronco/patologia , Modelos Animais de Doenças
10.
Tissue Cell ; 79: 101919, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36137362

RESUMO

Type 1 diabetes is an autoimmune disease that emerges with the destruction of beta cells of pancreatic Langerhans islets. Three different therapeutical approaches have been developed so far; pancreas transplantation, islet transplantation, and cell-based therapies. Bioengineering cell sheets for tissue generating is one of the latest approaches that have been used to construct cell-sheets instead of single cells so that it mimics the in vivo environments more. In this study, extra-hepatic functional islet tissue was constructed by transferring the 3-D beta cells and GFP labelled MSCs MSC sheets to the subcutaneous site of rats with STZ-induced diabetes. rBM-MSCs and beta cells were cultured on the 6-well PIPAAm culture dishes. Obtained rBM-MSCs as two-cell sheets and beta cells cultured in droplets with matrigel has transplanted into the dorsal subcutaneous area of diabetic rats. Fasting blood glucose levels and body weights were evaluated for 30 days after transplantation. Immunocytochemistry analysis for the anti-apoptotic, anti-inflammatory, and angiogenetic effects of MSCs on the 30th day of subcutaneous cell transplantation. All recipient rats transplanted with beta-cells with MSCs returned toward normoglycemia by day 5 and remained at this level for 30 days. Immunocytochemical analyses supported that the MSCs and beta cells preserved their viability and function. MSCs secrete cytokines and growth factors TGF-ß and IL-6; MSCs of the important features of the anti-apoptotic and anti-inflammatory properties, thanks to apoptosis of beta cells preserve graft explained by inhibition. In transplantation of MSCs induced angiogenesis and neovascularization, PECAM-1 and GFP positive simultaneously determining endothelial cells was observed indicating. Subcutaneous 3D beta-cell transplantation would be possible with the MSC-sheets as a feeder layer of beta cells. The beta-cell line is glucose-sensitive and has a high insulin release potential, and can be used as an alternative to islets in in vivo transplant studies.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Células Endoteliais/metabolismo , Células Secretoras de Somatostatina/metabolismo , Transplante das Ilhotas Pancreáticas/fisiologia , Bioengenharia , Insulina/metabolismo
11.
J Pharm Sci ; 111(12): 3232-3242, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995206

RESUMO

The aim of the present study was to explore the antileishmanial performance and wound healing effect of exosomes isolated from Wharton Jelly derived mesenchymal stem cells (WJ-MSCs) in combination with aloe-emodin. MSCs obtained from Wharton Jelly were characterized by flow cytometry. Exosomes were isolated from cultivated stem cells by ultacentrifugation method. Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and flow cytometry were used for characterization of obtained exosomes. The cytotoxicities of characterized exosomes and aloe-emodin at different concentrations were investigated on L929 and J774 cell lines. Non-toxic concentrations of each agent were combined and their inhibitory efficacies on L.major promastigotes and amastigotes were investigated by different techniques such as MTT, parasite count and measurements of infection index. Finally, wound healing activities of combinations were examined on in vitro artifical wound model and compared with the use of exosomes alone. According to outcome of flow cytometic analysis, vesicles isolated from WJ-MSCs highly expressed the markers such as CD63 special for exosome profile. SEM and NTA results demonstrated that derived exosomes possessed dimensions between 150 to 200 nanometers and elicited the cup-shape specific to exosomes. Combinations including non-toxic dosages of exosomes and aloe-emodin demonstrated superior antileishmanial effectivenesses both on promastigotes and amastigotes in contrast to use of exosome alone since they lead to inhibition of promastigotes and amastigotes for 4 and 10-folds in comparison to control, respectively. Additionally, combinations elicited more rapidly and effective in vitro wound-healing performance in contrast to use of exosome alone. At the end of 24 h incubation application of combinations gave rise to wound closure at a rate of 72 %, while in the control group 52 % of wound area has not been healed, yet. These results reflect that mentioned combination has great potential to be used in treatment of cutaneus leishmaniasis (CL) since they have magnificient capacity to inhibit Leishmania parasites while enhancing wound healing.


Assuntos
Aloe , Emodina , Exossomos , Células-Tronco Mesenquimais , Geleia de Wharton , Cicatrização
12.
Eur J Pharm Biopharm ; 177: 224-240, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35850168

RESUMO

As a part of the central nervous system, the spinal cord (SC) provides most of the communications between the brain and other parts of the body. Any damage to SC interrupts this communication, leading to serious problems, which may remain for the rest of their life. Due to its significant impact on patients' quality of life and its exorbitant medical costs, SC injury (SCI) is known as one of the most challengeable diseases in the world. Thus, it is critical to introduce highly translatable therapeutic platforms for SCI treatment. So far, different strategies have been introduced, among which utilizing various types of stem cells is one of the most interesting ones. The capability of stem cells to differentiate into several types of cell lines makes them promising candidates for the regeneration of injured tissues. One of the other interesting and novel strategies for SCI treatment is the application of nanomaterials, which could appear as a carrier for therapeutic agents or as a platform for culturing the cells. Combining these two approaches, stem cells and nanomaterials, could provide promising therapeutic strategies for SCI management. Accordingly, in this review we have summarized some of the recent advancements in which the applications of different types of stem cells and nanomaterials, alone and in combination forms, were evaluated for SCI treatment.


Assuntos
Nanoestruturas , Traumatismos da Medula Espinal , Humanos , Qualidade de Vida , Traumatismos da Medula Espinal/terapia , Células-Tronco
13.
Med Oncol ; 39(8): 114, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674854

RESUMO

Inflammatory signals secreted from the tumor microenvironment are thought to promote tumor growth and survival. It has been reported that stromal cells in the tumor microenvironment have similar characteristics to tumor-associated cells. In addition miRNAs play critical roles in various diseases, including cancer. In this study, we aimed to investigate the effects of co-culture of cancer cells and stromal cells isolated from normal and malignant breast tissue on each other and the possible effects of miRNAs on these interactions. The characterized stromal cells were co-cultured with an MDA-MB-231 cancer cell line. The proliferation capacity of the experimental groups was evaluated using the WST-1 assay. The expression of breast cancer-specific miRNAs and related genes were assessed by real-time PCR. ELISA assay was performed to determine the concentration of some cytokines and chemokines. We found that the microenvironment plays an important role in the development of cancer, confirming the changes in the expression of oncogenic and tumor suppressor miRNA and their target genes after co-culture with malignant stromal cells. As a result of the studies, specific gene expressions of related signaling pathways were detected in correlation with miRNA changes and the effects of tumor microenvironment on tumorigenesis were revealed in detail. miRNAs have been shown to play an important role in cancer development in recent studies. The idea that these small molecules can be used in diagnosis and treatment is becoming stronger day by day. We believe that new treatment approaches involving the tumor microenvironment and using miRNAs as markers are promising.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral/genética
14.
J Vis Exp ; (183)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35635451

RESUMO

Peripheral neuropathies can occur as a result of axonal damage, and occasionally due to demyelinating diseases. Peripheral nerve damage is a global problem that occurs in 1.5%-5% of emergency patients and may lead to significant job losses. Today, tissue engineering-based approaches, consisting of scaffolds, appropriate cell lines, and biosignals, have become more applicable with the development of three-dimensional (3D) bioprinting technologies. The combination of various hydrogel biomaterials with stem cells, exosomes, or bio-signaling molecules is frequently studied to overcome the existing problems in peripheral nerve regeneration. Accordingly, the production of injectable systems, such as hydrogels, or implantable conduit structures formed by various bioprinting methods has gained importance in peripheral neuro-engineering. Under normal conditions, stem cells are the regenerative cells of the body, and their number and functions do not decrease with time to protect their populations; these are not specialized cells but can differentiate upon appropriate stimulation in response to injury. The stem cell system is under the influence of its microenvironment, called the stem cell niche. In peripheral nerve injuries, especially in neurotmesis, this microenvironment cannot be fully rescued even after surgically binding severed nerve endings together. The composite biomaterials and combined cellular therapies approach increases the functionality and applicability of materials in terms of various properties such as biodegradability, biocompatibility, and processability. Accordingly, this study aims to demonstrate the preparation and use of graphene-based biohybrid hydrogel patterning and to examine the differentiation efficiency of stem cells into nerve cells, which can be an effective solution in nerve regeneration.


Assuntos
Grafite , Traumatismos dos Nervos Periféricos , Materiais Biocompatíveis/química , Humanos , Hidrogéis/química , Alicerces Teciduais/química
15.
J Vis Exp ; (182)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35435916

RESUMO

Exosomes between 40 and 200 nm in size constitute the smallest subgroup of extracellular vesicles. These bioactive vesicles secreted by cells play an active role in intercellular cargo and communication. Exosomes are mostly found in body fluids such as plasma, cerebrospinal fluid, urine, saliva, amniotic fluid, colostrum, breast milk, joint fluid, semen, and pleural acid. Considering the size of exosomes, it is thought that they may play an important role in central nervous system diseases because they can pass through the blood-brain barrier (BBB). Hence, this study aimed to develop an exosome-based nanocarrier system by encapsulating dopamine into exosomes isolated from Wharton's jelly mesenchymal stem cells (WJ-MSCs). Exosomes that passed the characterization process were incubated with dopamine. The dopamine-loaded exosomes were recharacterized at the end of incubation. Dopamine-loaded exosomes were investigated in drug release and cytotoxicity assays. The results showed that dopamine could be successfully encapsulated within the exosomes and that the dopamine-loaded exosomes did not affect fibroblast viability.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Geleia de Wharton , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Feminino , Humanos
16.
Ann Plast Surg ; 88(4): 460-466, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711729

RESUMO

ABSTRACT: This study was designed to evaluate the efficacy of epineural tubulization (ENT) with or without intratubal application of adipose-derived mesenchymal stem cells (ASCs) in the rat model of sciatic nerve transection. After formation of 1-cm defect in the left sciatic nerve and ENT, 32 adults female Wistar albino rats were separated into 4 groups (n = 8 for each) including ENT per se (group 1; ENT group) and ENT plus intratubal ASC injection groups killed on day 21 (group 2; ENT-ASC-21-day group), 60 days (group 3; ENT-ASC-60-day group), and 120 days (group 4; ENT-ASC-120-day group). Functional (sciatic function index, hip circumference, withdrawal reflex latency, muscle weight ratio), electrophysiological, histomorphometric, and immunohistochemical analyses were performed in each group. Sciatic function index was significantly higher (-51.98 ± 5.94, P < 0.01) and withdrawal reflex latency was shorter (-6.21 ± 2.14, P < 0.01), in the group 4 as compared with all other groups on day 21. Amplitude of contraction was significantly lower in the group 4 as compared with all other groups (0.22 ± 0.05 vs 0.34 ± 0.07, 0.50 ± 0.11, and 0.61 ± 0.16, P < 0.01 for each). Immunohistochemical analysis revealed presence of green fluorescent protein, vimentin-stained cells, and single neural progenitor cells indicating that induction of neuronal differentiation by ASCs and direct involvement of ASCs within the axonal structure alongside extension of ASCs to the muscular layer of the group 4. In conclusion, our findings revealed that use of ENT plus intratubal ASC injection in a rat sciatic nerve transection model was associated with satisfactory functional outcome and improved peripheral axonal regeneration along with stem cell neural differentiation.


Assuntos
Células-Tronco Mesenquimais , Regeneração Nervosa , Animais , Axônios , Feminino , Humanos , Regeneração Nervosa/fisiologia , Ratos , Ratos Wistar , Nervo Isquiático
17.
Methods Mol Biol ; 2454: 17-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34724186

RESUMO

Adult somatic cells can be reprogrammed and become pluripotent called induced pluripotent stem cells (iPSC) when they are induced by the stemness genes. The iPSCs have been representing a research and development platform for cell-based therapies, and even in gene editing technologies as they provide the ability to differentiate almost all cell types. The efficiency of the protocols for the iPSC development defines the success of the experiments' outcome. Here, we describe the optimized protocol for obtaining human iPSCs derived from mesenchymal stem cells of bone-marrow origin to shed a light on the hurdles in the research laboratories.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Adulto , Medula Óssea , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo
18.
Turk J Biol ; 45(3): 301-313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377054

RESUMO

Selective targeting of transfected mesenchymal stem cells (MSCs) carrying specific antioncogenes to the tumor was suggested as a treatment option. Bone morphogenetic protein-2 (BMP2) was shown to inhibit the proliferation and aggressiveness of osteosarcoma (OS) cells. Here, we aimed to assess the homing efficiency of intraperitoneally administered hMSCs transfected with BMP2 to the tumoral site and their effects on OS using an orthotopic xenograft murine model. Orthotopic xenograft murine model of OS in six-week-old female NOD/SCID mice using 143B cells was established. hMSCs transfected with BMP2 (BMP2+hMSC) were used. In vivo experiments performed on four groups of mice that received no treatment, or intraperitoneally administered BMP2, hMSCs, and BMP2+hMSCs. Histopathological and immunohistochemical studies were used to evaluate the pathological identification and to assess the dimensions and necrotic foci of the tumor, the features of lung metastases, and immunostaining against p27, Ki-67, and caspase-3 antibodies. The osteogenic differentiation markers BMP2, BMP4, COL1A1, OPN, OCN and PF4 evaluated using RT-PCR. The tumor dimensions in the hMSCs group were significantly higher than those of the remaining groups (p < 0.01). The number of metastatic foci in the BMP2+hMSCs group was significantly lower than those of the other groups (p < 0.01). The current results showed that the intraperitoneal route could be efficiently used for targeting hMSCs to the tumoral tissues for effective BMP2 delivery. In this study, the effects of BMP2 transfected hMSCs on human OS and metastasis were promising for achieving osteogenic differentiation and reduced metastatic process.

19.
J Membr Biol ; 254(4): 409-422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34230997

RESUMO

One of the drawbacks preventing the use of mesenchymal stem cells (MSCs) in clinical practice is the heterogeneous nature of their cultures. MSC cultures are not homogeneously formed by the MSCs and may contain non-mesenchymal cell types. Therefore, prior to use in clinics or research, complete characterization of MSCs should be performed to demonstrate the existence or absence of proper stem cell markers, many of which are happened to be cell-surface proteins. Unfortunately, the success of MSC characterization studies is limited due to the low specificity of the currently available cell-surface markers. Therefore, in this study, we aimed to investigate the plasma membrane (PM) proteins of MSCs isolated from human dental pulp (DP), adipose tissue (AT), bone marrow (BM), and hair follicle (HF) with the hope of proposing novel putative specific MSC markers. Differential-velocity centrifugation was used to enrich PM proteins. The isolated proteins were then identified by nLC-MS/MS and subjected to bioinformatics analysis. Proteins that were unique to each MSC type (CD9, CD10, CD63 for DP-MSCs; CD26, CD81, CD201, CD364 for AT-MSCs; Cd49a, CD49d for HF-MSCs; CD49e, CD56, CD92, CD97, CD156b, CD156c, CD220, CD221, CD298, CD315 for BM-MSCs) and common to all four MSC types (CD13, CD29, CD44, CD51, CD59, CD73, CD90) were identified. Uncharacterized proteins that have transmembrane (TM) domains were also detected. Some of the proteins identified in this study were the putative cell-surface markers that might be used for characterization of MSCs.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Tecido Adiposo , Biomarcadores/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Folículo Piloso/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Espectrometria de Massas em Tandem
20.
World J Stem Cells ; 13(5): 470-484, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34136076

RESUMO

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of death and long-term neurological impairment in the pediatric population. Despite a limited number of treatments to cure HIE, stem cell therapies appear to be a potential treatment option for brain injury resulting from HIE. AIM: To investigate the efficacy and safety of stem cell-based therapies in pediatric patients with HIE. METHODS: The study inclusion criteria were determined as the presence of substantial deficit and disability caused by HIE. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) were intrathecally (IT), intramuscularly (IM), and intravenously administered to participants at a dose of 1 × 106/kg for each administration route twice monthly for 2 mo. In different follow-up durations, the effect of WJ-MSCs administration on HIE, the quality of life, prognosis of patients, and side effects were investigated, and patients were evaluated for neurological, cognitive functions, and spasticity using the Wee Functional Independence Measure (Wee FIM) Scale and Modified Ashworth (MA) Scale. RESULTS: For all participants (n = 6), the mean duration of exposure to hypoxia was 39.17 + 18.82 min, the mean time interval after HIE was 21.83 ± 26.60 mo, the mean baseline Wee FIM scale score was 13.5 ± 0.55, and the mean baseline MA scale score was 35 ± 9.08. Three patients developed only early complications such as low-grade fever, mild headache associated with IT injection, and muscle pain associated with IM injection, all of which were transient and disappeared within 24 h. The treatment was evaluated to be safe and effective as demonstrated by magnetic resonance imaging examinations, electroencephalographies, laboratory tests, and neurological and functional scores of patients. Patients exhibited significant improvements in all neurological functions through a 12-mo follow-up. The mean Wee FIM scale score of participants increased from 13.5 ± 0.55 to 15.17 ± 1.6 points (mean ± SD) at 1 mo (z = - 1.826, P = 0.068) and to 23.5 ± 3.39 points at 12 mo (z = -2.207, P = 0.027) post-treatment. The percentage of patients who achieved an excellent functional improvement (Wee FIM scale total score = 126) increased from 10.71% (at baseline) to 12.03% at 1 mo and to 18.65% at 12 mo post-treatment. CONCLUSION: Both the triple-route and multiple WJ-MSC implantations were safe and effective in pediatric patients with HIE with significant neurological and functional improvements. The results of this study support conducting further randomized, placebo-controlled studies on this treatment in the pediatric population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...