Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 16: 595, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26265254

RESUMO

BACKGROUND: A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat. RESULTS: We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91% of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87% of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B. CONCLUSIONS: We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Mapeamento Físico do Cromossomo/métodos , Triticum/genética , Cromossomos de Plantas , Evolução Molecular , Ordem dos Genes , Rearranjo Gênico , Marcadores Genéticos , Região Organizadora do Nucléolo
2.
Plant J ; 76(4): 699-708, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980637

RESUMO

Comparative analysis using available genomic resources within closely related species is an effective way to investigate genomic sequence and structural diversity. Rice (Oryza sativa L.) has undergone significant physiological and morphological changes during its domestication and local adaptation. We present a complete bacterial artificial chromosome (BAC) physical map for the aus rice cultivar 'Kasalath', which covers 90% of the sequence of temperate japonica rice cultivar 'Nipponbare'. Examination of physical distances between computational and experimental measurements of 'Kasalath' BAC insert size revealed the presence of more than 500 genomic regions that appear to have significant chromosome structural changes between the two cultivars. In particular, a genomic region on the long arm of 'Kasalath' chromosome 11 carrying a disease-resistance gene cluster was greatly expanded relative to the 'Nipponbare' genome. We also decoded 41.37 Mb of high-quality genomic sequence from 'Kasalath' chromosome 1. Extensive comparisons of chromosome 1 between 'Kasalath' and 'Nipponbare' led to the discovery of 317,843 single-nucleotide polymorphisms (SNPs) and 66,331 insertion/deletion (indel) sites. Nearly two-thirds of the expressed genes on rice chromosome 1 carried natural variations involving SNPs and/or indels that resulted in substitutions, insertions or deletions of amino acids in one cultivar relative to the other. We also observed gain and loss of genes caused by large indels. This study provides an important framework and an invaluable dataset for further understanding of the molecular mechanisms underlying the evolution and functions of the rice genome.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Genoma de Planta , Oryza/genética , Mapeamento Físico do Cromossomo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Variação Genética , Dados de Sequência Molecular
3.
Plant J ; 60(5): 805-19, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19702669

RESUMO

Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25-Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, 'Kasalath' (Kas-Cen8). Analysis of repetitive sequences in Kas-Cen8 led to the identification of 222 long terminal repeat (LTR)-retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas-Cen8 sequence with that of japonica rice 'Nipponbare' (Nip-Cen8) revealed that about 66.8% of the Kas-Cen8 sequence was collinear with that of Nip-Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR-retrotransposon elements in 'Kasalath' had orthologs in 'Nipponbare', thus reflecting recent proliferation of a considerable number of LTR-retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR-retrotransposons between the two Cen8 regions revealed variations between 'Kasalath' and 'Nipponbare' in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR-retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.


Assuntos
Centrômero/química , Variação Genética , Oryza/genética , Sequência de Bases , Centrômero/metabolismo , Centrômero/ultraestrutura , Cromossomos de Plantas , Sequência Conservada , Dados de Sequência Molecular , Oryza/metabolismo , Oryza/ultraestrutura , Análise de Sequência de DNA
4.
Plant Cell ; 16(4): 967-76, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15037733

RESUMO

Understanding the organization of eukaryotic centromeres has both fundamental and applied importance because of their roles in chromosome segregation, karyotypic stability, and artificial chromosome-based cloning and expression vectors. Using clone-by-clone sequencing methodology, we obtained the complete genomic sequence of the centromeric region of rice (Oryza sativa) chromosome 8. Analysis of 1.97 Mb of contiguous nucleotide sequence revealed three large clusters of CentO satellite repeats (68.5 kb of 155-bp repeats) and >220 transposable element (TE)-related sequences; together, these account for approximately 60% of this centromeric region. The 155-bp repeats were tandemly arrayed head to tail within the clusters, which had different orientations and were interrupted by TE-related sequences. The individual 155-bp CentO satellite repeats showed frequent transitions and transversions at eight nucleotide positions. The 40 TE elements with highly conserved sequences were mostly gypsy-type retrotransposons. Furthermore, 48 genes, showing high BLAST homology to known proteins or to rice full-length cDNAs, were predicted within the region; some were close to the CentO clusters. We then performed a genome-wide survey of the sequences and organization of CentO and RIRE7 families. Our study provides the complete sequence of a centromeric region from either plants or animals and likely will provide insight into the evolutionary and functional analysis of plant centromeres.


Assuntos
Cromossomos de Plantas/genética , Oryza/genética , Composição de Bases , Sequência de Bases , Centrômero/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais de Bacteriófago P1/genética , Sequência Conservada , Elementos de DNA Transponíveis/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Satélite/genética , Genoma de Planta , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Sequências Repetitivas de Ácido Nucleico
5.
Plant J ; 36(5): 720-30, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14617072

RESUMO

We constructed physical maps of rice chromosomes 1, 2, and 6-9 with P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) clones. These maps, with only 20 gaps, cover more than 97% of the predicted length of the six chromosomes. We submitted a total of 193 Mbp of non-overlapping sequences to public databases. We analyzed the DNA sequences of 1316 genetic markers and six centromere-specific repeats to facilitate characterization of chromosomal recombination frequency and of the genomic composition and structure of the centromeric regions. We found marked changes in the relative recombination rate along the length of each chromosome. Chromosomal recombination at the centromere core and surrounding regions on the six chromosomes was completely suppressed. These regions have a total physical length of about 23 Mbp, corresponding to 11.4% of the entire size of the six chromosomes. Chromosome 6 has the longest quiescent region, with about 5.6 Mbp, followed by chromosome 8, with quiescent region about half this size. Repetitive sequences accounted for at least 40% of the total genomic sequence on the partly sequenced centromeric region of chromosome 1. Rice CentO satellite DNA is arrayed in clusters and is closely associated with the presence of Centromeric Retrotransposon of Rice (CRR)- and RIce RetroElement 7 (RIRE7)-like retroelement sequences. We also detected relatively small coldspot regions outside the centromeric region; their repetitive content and gene density were similar to those of regions with normal recombination rates. Sequence analysis of these regions suggests that either the amount or the organization patterns of repetitive sequences may play a role in the inactivation of recombination.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas , Oryza/genética , Recombinação Genética/genética , Cromossomos Artificiais/genética , Cromossomos de Plantas/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente
6.
Nature ; 420(6913): 312-6, 2002 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12447438

RESUMO

The rice species Oryza sativa is considered to be a model plant because of its small genome size, extensive genetic map, relative ease of transformation and synteny with other cereal crops. Here we report the essentially complete sequence of chromosome 1, the longest chromosome in the rice genome. We summarize characteristics of the chromosome structure and the biological insight gained from the sequence. The analysis of 43.3 megabases (Mb) of non-overlapping sequence reveals 6,756 protein coding genes, of which 3,161 show homology to proteins of Arabidopsis thaliana, another model plant. About 30% (2,073) of the genes have been functionally categorized. Rice chromosome 1 is (G + C)-rich, especially in its coding regions, and is characterized by several gene families that are dispersed or arranged in tandem repeats. Comparison with a draft sequence indicates the importance of a high-quality finished sequence.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Oryza/genética , Mapeamento Físico do Cromossomo , Arabidopsis/genética , Composição de Bases , Cloroplastos/genética , Biologia Computacional , Mapeamento de Sequências Contíguas , Elementos de DNA Transponíveis/genética , Éxons/genética , Etiquetas de Sequências Expressas , Genes de Plantas/genética , Hibridização in Situ Fluorescente , Íntrons/genética , Dados de Sequência Molecular , Família Multigênica/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA , Homologia de Sequência , Sequências de Repetição em Tandem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...