Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 116465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507955

RESUMO

This study introduces an innovative co-delivery approach using the MCM-co-polymerized nanosystem, integrating chitosan and polyethylene glycol, and targeted by the MUC-1 aptamer (MCM@CS@PEG-APT). This system enables simultaneous delivery of the GFP plasmid and doxorubicin (DOX). The synthesis of the nanosystem was thoroughly characterized at each step, including FTIR, XRD, BET, DLS, FE-SEM, and HRTEM analyses. The impact of individual polymers (chitosan and PEG) on payload retardation was compared to the co-polymerized MCM@CS@PEG conjugation. Furthermore, the DOX release mechanism was investigated using various kinetic models. The nanosystem's potential for delivering GFP plasmid and DOX separately and simultaneously was assessed through fluorescence microscopy and flow cytometry. The co-polymerized nanosystem exhibited superior payload entrapment (1:100 ratio of Plasmid:NPs) compared to separately polymer-coated counterparts (1:640 ratio of Plasmid:NPs). Besides, the presence of pH-sensitive chitosan creates a smart nanosystem for efficient DOX and GFP plasmid delivery into tumor cells, along with a Higuchi model pattern for drug release. Toxicity assessments against breast tumor cells also indicated reduced off-target effects compared to pure DOX, introducing it as a promising candidate for targeted cancer therapy. Cellular uptake findings demonstrated the nanosystem's ability to deliver GFP plasmid and DOX separately into MCF-7 cells, with rates of 32% and 98%, respectively. Flow cytometry results confirmed efficient co-delivery, with 42.7% of cells showing the presence of both GFP-plasmid and DOX, while 52.2% exclusively contained DOX. Overall, our study explores the co-delivery potential of the MCM@CS@PEG-APT nanosystem in breast cancer therapy. This system's ability to co-deliver multiple agents preciselyopens new avenues for targeted therapeutic strategies.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Polimerização , Doxorrubicina/farmacologia , Oligonucleotídeos , Plasmídeos , DNA , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos
2.
J Biomater Sci Polym Ed ; 35(6): 823-850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300323

RESUMO

Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.


Assuntos
Cerâmica , Grafite , Nanocompostos , Polimetil Metacrilato , Silicatos , Humanos , Ratos , Animais , Cimentos Ósseos , Vancomicina/farmacologia , Osteogênese , Teste de Materiais
3.
J Biomater Sci Polym Ed ; 35(6): 916-965, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349200

RESUMO

In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.


Assuntos
Queratinas , Engenharia Tecidual , Animais , Engenharia Tecidual/métodos , Queratinas/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Medicina Regenerativa
4.
J Biomater Sci Polym Ed ; 35(6): 799-822, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289681

RESUMO

Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-ß3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined by real-time PCR. The expression of proteins COLII and COLX was also determined by immunohistochemistry. Glycosaminoglycan was measured by toluidine blue staining. 3D-printed scaffolds clearly improved cell proliferation, viability, water absorption and compressive strength compared to the hydrogel groups. Moreover, the use of compounds such as ECM and Piascledine in the process of ADSCs chondrogenesis induction increased cartilage-specific markers and decreased the hypertrophic marker compared to TGF-ß3. In Piascledine groups, the expression of COLL II protein, COLL II and Aggrecan genes, and the amount of glycosaminoglycan showed a significant increase in the PCL/F/ECM compared to the PCL and PCL/F groups.


Assuntos
Células-Tronco Mesenquimais , Fitosteróis , Extratos Vegetais , Poliésteres , Alicerces Teciduais , Vitamina E , Alicerces Teciduais/química , Condrogênese , Fator de Crescimento Transformador beta3/farmacologia , Cartilagem , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Glicosaminoglicanos , Diferenciação Celular , Impressão Tridimensional , Hidrogéis/metabolismo , Combinação de Medicamentos
5.
Int J Biol Macromol ; 260(Pt 1): 129407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224805

RESUMO

The utilization of 3D printing has become increasingly common in the construction of composite scaffolds. In this study, magnetic mesoporous bioactive glass (MMBG) was incorporated into polyhydroxybutyrate (PHB) to construct extrusion-based 3D printed scaffold. After fabrication of the PHB/MMBG composite scaffolds, they were coated with chitosan (Cs) and chitosan/multi-walled carbon nanotubes (Cs/MWCNTs) solutions utilizing deep coating method. FTIR was conducted to confirm the presence of Cs and MWCNTs on the scaffolds' surface. The findings of mechanical analysis illustrated that presence of Cs/MWCNTs on the composite scaffolds increases compressive young modulus significantly, from 16.5 to 42.2 MPa. According to hydrophilicity evaluation, not only MMBG led to decrease the contact angle of pure PHB but also scaffolds surface modification utilization of Cs and MWCNTs, the contact angle decreased significantly from 82.34° to 54.15°. Furthermore, investigation of cell viability, cell metabolism and inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) and transforming growth factor-beta (TGF-ß) proved that the scaffolds not only do not stimulate the immune system, but also polarize macrophage cells from M1 phase to M2 phase. The present study highlights the suitability of 3D printed scaffold PHB/MMBG with Cs/MWCNTs coating for bone tissue engineering.


Assuntos
Quitosana , Nanocompostos , Nanotubos de Carbono , Alicerces Teciduais , Ácido 3-Hidroxibutírico , Porosidade , Engenharia Tecidual/métodos , Regeneração Óssea , Poliésteres/farmacologia , Impressão Tridimensional , Fenômenos Magnéticos
6.
Int J Biol Macromol ; 254(Pt 2): 127860, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939755

RESUMO

Bioglass is widely used in skeletal tissue engineering due to its outstanding bioactive properties. In the present study, magnetic mesoporous bioglass (MMBG) synthesized through the sol-gel method was incorporated into poly(3-hydroxybutyrate)-chitosan (PHB-Cs) solution and the resulting electrospun nanocomposite scaffolds were investigated and compared with MMBG free scaffold. The addition of 10 wt% MMBG has an outstanding effect on producing ultra-thin electrospun nanocomposite fibers due to its magnetic content (diameter of ≃128 nm). This improvement led to better mechanical properties, including an increase in both tensile modulus (up to ≃229 MPa) and tensile strength (to ≃4.95 MPa). Although the inclusion of MMBG slightly decreased the surface roughness of the nanofibrous scaffold (RMS from ≃197 to 154 nm), it could improve the wettability (WCA from ≃54 to 44°). This achievement has the potential to bring an enhancement in biomineralization and biological response. These outputs, combined with the observed increase in human osteoblast MG-63 cell viability (≃53 % improvement) as measured by MTT assay, DAPI, and SEM indicate prefer cell behavior of this nanocomposite structure. Additionally, the qualitative improvement in Alizarin Red staining and the quantitative enhancement of ALP secretion, serve as further evidence of the PHB-Cs/MMBG ultrathin nanofibers potential in bone tissue engineering.


Assuntos
Quitosana , Nanocompostos , Nanofibras , Humanos , Engenharia Tecidual/métodos , Quitosana/química , Alicerces Teciduais/química , Ácido 3-Hidroxibutírico , Fenômenos Magnéticos , Nanocompostos/química , Nanofibras/química , Poliésteres/química
7.
Res Pharm Sci ; 18(5): 566-579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842514

RESUMO

Background and purpose: Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering. Experimental approach: In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days. Findings/Results: The incorporation of Ag hydrogel with PCL insignificantly decreased the mechanical strength of the scaffold. The presence of Ag enhanced the hydrophilicity and water absorption of the scaffolds, which could positively influence their cell behavior compared to the PCL scaffolds. Regarding cell morphology, the cells on the PCL scaffolds had a more rounded shape and less cell spreading, representing poor cell attachment and cell-scaffold interaction due to the hydrophobic nature of PCL. Conversely, the cells on the PCL/Ag scaffolds were elongated with a spindle-shaped morphology indicating a positive cell-scaffold interaction. Conclusion and implications: PCL/Ag scaffolds can be considered appropriate for tissue-engineering applications.

8.
Int J Biol Macromol ; 253(Pt 3): 126843, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703978

RESUMO

Materials and fabrication methods significantly influence the scaffold's final features in tissue engineering. This study aimed to blend zein with polyhydroxybutyrate (PHB) at 5, 10, and 15 wt%, fabricate scaffolds using electrospinning, and then characterize them. SEM and mechanical analyses identified the scaffold with 10 wt% zein (PHB-10Z) as the optimal sample. Incorporating 10 wt% zein reduced fiber diameter from 894 ± 122 to 531 ± 42 nm while increasing ultimate tensile strength and elongation at break by approximately 53 % and 70 %, respectively. FTIR proved zein's presence in the scaffolds and possible hydrogen bonding with PHB. TGA confirmed the miscibility of polymers. DSC and XRD analyses indicated lower crystallinity for the PHB-10Z than for PHB. AFM evaluation indicated a rougher surface for the PHB-10Z in comparison to PHB. The PHB-10Z demonstrated a more hydrophobic surface and less weight loss after 100 days of degradation in PBS than PHB. The free radical scavenging assay exhibited antioxidant activity for the zein-containing scaffold. Eventually, enhanced cell attachment, viability, and differentiation in the PHB-10Z scaffold drawn from SEM, MTT, ALP activity, and Alizarin red staining of MG-63 cells confirmed that PHB-zein electrospun scaffold is a potent candidate for bone tissue engineering applications.


Assuntos
Engenharia Tecidual , Zeína , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Zeína/química , Poliésteres/química
9.
Int J Biol Macromol ; 250: 126076, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532195

RESUMO

The electrospun scaffolds could mimic the highly hierarchical structure of extracellular matrix (ECM). Modern tissue engineering focuses on the properties of these microstructures, influencing the biological responses. This research investigates the variation of morphology, crystallinity, bioactivity, mechanical properties, contact angle, mass loss rate, roughness, cell behavior, biomineralization, and the efficacy of polyhydroxybutyrate (PHB)-based nanocomposite. Hence, 6 wt% lignin and 3 wt% cellulose nanofiber were added to the 9 wt% of PHB to prepare a novel electrospun nanocomposite structure (PLC). The outputs indicated more symmetrical circular fibers for PLC mat, higher surface roughness (326 to 389 nm), better hydrophilicity (120 to 60°), smaller crystal size (24 to 16 nm), and more reasonable biodegradability compared to PHB. These changes lead to the improvement of mechanical properties (toughness factor from 300 to 1100), cell behavior (viability from 60 to 100 %), bioactivity (from Ca/P ratio of 0.77 and 1.67), and higher level of alizarin red, and ALP enzyme secretion. Eventually, the osteopontin and alkaline phosphatase expression was also enhanced from ≃2.35 ± 0.15 and 2.1 ± 0.1 folds on the 1st day to ≃12.05 ± 0.35 and 7.95 ± 0.35 folds on 2nd week in PLCs. Accordingly, this newly developed structure could enhance biological responses and promote osteogenesis compared to PHB.

10.
Int J Biol Macromol ; 247: 125593, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406897

RESUMO

Mechanical properties appropriate to native tissues, as an essential component in bone tissue engineering scaffolds, plays a significant role in tissue formation. In the current study, Poly-3 hydroxybutyrate-chitosan (PC) scaffolds reinforced with graphene oxide (GO) were made by the electrospinning method. The addition of GO led to a decrease in fibers diameter, an increase in thermal capacity and an improvement in the surface hydrophilicity of nanocomposite scaffolds. A significant increase in the mechanical properties of PC/GO (PCG) nanocomposite scaffolds was achieved due to the inherent strength of GO as well as its uniform dispersion throughout the polymeric matrix owing to hydrogen bonding and polar interactions. Also, lower biological degradation of the scaffolds (~30% in 100 days) due to the presence of GO provides essential mechanical support for bone regeneration. In addition, the bioactivity results showed that GO reinforcement significantly increases the biomineralization on the surface of the scaffolds. Evaluating cell adhesion and proliferation, as well as ALP activity of MG-63 cells on PC and PCG scaffolds indicated the positive effect of GO on scaffolds' biocompatibility. Overall, the improvement of physicochemical, mechanical, and biological properties of GO-reinforced scaffolds shows the potential of PCG nanocomposite scaffolds for bone tissue engineering.


Assuntos
Quitosana , Grafite , Nanocompostos , Engenharia Tecidual , Quitosana/química , Alicerces Teciduais/química , Grafite/farmacologia , Grafite/química , Nanocompostos/química
11.
Int J Biol Macromol ; 249: 126064, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37524286

RESUMO

In this study, we synthesized and incorporated chitosan nanoparticles (Cs) into polyhydroxy butyrate (PHB) electrospun scaffolds for cartilage tissue engineering. The Cs nanoparticles were synthesized via an ionic gel interaction between Cs powder and tripolyphosphate (TPP). The mechanical properties, hydrophilicity, and fiber diameter of the PHB scaffolds with varying concentrations of Cs nanoparticles (1-5 wt%) were evaluated. The results of these evaluations showed that the scaffold containing 1 wt% Cs nanoparticles (P1Cs) was the optimum scaffold, with increased ultimate strength from 2.6 to 5.2 MPa and elongation at break from 5.31 % to 12.6 %. Crystallinity, degradation, and cell compatibility were also evaluated. The addition of Cs nanoparticles decreased crystallinity and accelerated hydrolytic degradation. MTT assay results showed that the proliferation of chondrocytes on the scaffold containing 1 wt% Cs nanoparticles were significantly higher than that on pure PHB after 7 days of cultivation. These findings suggest that the electrospun P1Cs scaffold has promising potential as a substrate for cartilage tissue engineering applications. This combination offers a promising approach for the fabrication of biomimetic scaffolds with enhanced mechanical properties, hydrophilicity, and cell compatibility for tissue engineering applications.


Assuntos
Quitosana , Nanopartículas , Engenharia Tecidual/métodos , Quitosana/química , Alicerces Teciduais/química , Cartilagem , Nanopartículas/química , Butiratos , Proliferação de Células
12.
Int J Biol Macromol ; 243: 125218, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285889

RESUMO

Recently, coating on composite scaffolds has attracted many researchers' attention to improve scaffolds' properties. In this research, a 3D printed scaffold was fabricated from polycaprolactone (PCL)/magnetic mesoporous bioactive glass (MMBG)/alumina nanowire (Al2O3, Optimal percentage 5 %) (PMA) and then coated with chitosan (Cs)/multi-walled carbon nanotubes (MWCNTs) by an immersion coating method. Structural analyses such as XRD and ATR-FTIR confirmed the presence of Cs and MWCNTs in the coated scaffolds. The SEM results of the coated scaffolds showed homogeneous three-dimensional structures with interconnected pores compared to the uncoated scaffolds. The coated scaffolds exhibited an increase in compression strength (up to 16.1 MPa) and compressive modulus (up to 40.83 MPa), improved surface hydrophilicity (up to 32.69°), and decrease in degradation rate (68 % remaining weight) compared to the uncoated scaffolds. The increase in apatite formation in the scaffold coated with Cs/MWCNTs was confirmed by SEM, EDAX, and XRD tests. Coating the PMA scaffold with Cs/MWCNTs leads to the viability and proliferation of MG-63 cells and more secretion of alkaline phosphatase and Ca activity, which can be introduced as a suitable candidate for use in bone tissue engineering.


Assuntos
Quitosana , Nanocompostos , Nanotubos de Carbono , Engenharia Tecidual/métodos , Quitosana/química , Alicerces Teciduais/química , Poliésteres/química , Impressão Tridimensional , Porosidade
13.
Int J Biol Macromol ; 242(Pt 1): 124602, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141963

RESUMO

In this study, the effect of alumina nanowire on the physical and biological properties of polyhydroxybutyrate-keratin (PHB-K) electrospun scaffold was investigated. First, PHB-K/alumina nanowire nanocomposite scaffolds were made with an optimal concentration of 3 wt% alumina nanowire by using the electrospinning method. The samples were examined in terms of morphology, porosity, tensile strength, contact angle, biodegradability, bioactivity, cell viability, ALP activity, mineralization ability, and gene expression. The nanocomposite scaffold provided a porosity of >80 % and a tensile strength of about 6.72 MPa, which were noticeable for an electrospun scaffold. AFM images showed an increase in surface roughness with the presence of alumina nanowires. This led to an improvement in the degradation rate and bioactivity of PHB-K/alumina nanowire scaffolds. The viability of mesenchymal cells, alkaline phosphatase secretion, and mineralization significantly increased with the presence of alumina nanowire compared to PHB and PHB-K scaffolds. In addition, the expression level of collagen I, osteocalcin, and RUNX2 genes in nanocomposite scaffolds increased significantly compared to other groups. In general, this nanocomposite scaffold could be a novel and interesting construct for osteogenic induction in bone tissue engineering.


Assuntos
Nanocompostos , Alicerces Teciduais , Osteogênese , Engenharia Tecidual/métodos , Regeneração Óssea , Óxido de Alumínio/farmacologia , Queratinas/farmacologia , Poliésteres/farmacologia , Diferenciação Celular
14.
Carbohydr Polym ; 312: 120787, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059527

RESUMO

Three-dimensional (3D) printing technology has become an advanced approach for fabricating patient-specific scaffolds with complex geometric shapes to replace damaged or diseased tissue. Herein, polylactic acid (PLA)-Baghdadite (Bgh) scaffold were made through the fused deposition modeling (FDM) 3D printing method and subjected to alkaline treatment. Following fabrication, the scaffolds were coated with either chitosan (Cs)-vascular endothelial growth factor (VEGF) or lyophilized Cs-VEGF known as PLA-Bgh/Cs-VEGF and PLA-Bgh/L.(Cs-VEGF), respectively. Based on the results, it was found that the coated scaffolds had higher porosity, compressive strength and elastic modulus than PLA and PLA-Bgh samples. Also, the osteogenic differentiation potential of scaffolds following culture with rat bone marrow-derived mesenchymal stem cells (rMSCs) was evaluated through crystal violet and Alizarin-red staining, alkaline phosphatase (ALP) activity and calcium content assays, osteocalcin measurements, and gene expression analysis. The release of VEGF from the coated scaffolds was assessed and also the angiogenic potential of scaffolds was evaluated. The sum of results presented in the current study strongly suggests that the PLA-Bgh/L.(Cs-VEGF) scaffold can be a proper candidate for bone healing applications.


Assuntos
Quitosana , Nanocompostos , Ratos , Animais , Osteogênese , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/genética , Regeneração Óssea , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Porosidade
15.
Int J Biol Macromol ; 233: 123651, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36775228

RESUMO

Scaffolding method and material that mimic the extracellular matrix (ECM) of host tissue is an integral part of cartilage tissue engineering. This study aims to enhance the properties of electrospun scaffolds made of polyhydroxybutyrate (PHB) - Chitosan (Cs) by adding 1, 3, and 5 wt% halloysite nanotubes (HNT). The morphological, mechanical, and hydrophilicity evaluations expressed that the scaffold containing 3 wt% HNT exhibits the most appropriate features. The FTIR and Raman analysis confirmed hydrogen bond formation between the HNT and PHB-Cs blend. 3 wt% of HNT incorporation decreased the mean fibers' diameter from 965.189 to 745.16 nm and enhanced tensile strength by 169.4 %. By the addition of 3 wt% HNT, surface contact angle decreased from 61.45° ± 3.3 to 46.65 ± 1.8° and surface roughness increased from 684.69 to 747.62 nm. Our findings indicated that biodegradation had been slowed by incorporating HNT into the PHB-Cs matrix. Also, MTT test results demonstrated a significant increase in cell viability of chondrocytes on the PHB-Cs/3 wt% HNT (PC-3H) scaffold after 7 days of cell culture. Accordingly, the PC-3H scaffold can be considered a potential candidate for cartilage tissue engineering.


Assuntos
Quitosana , Nanotubos , Engenharia Tecidual/métodos , Quitosana/química , Alicerces Teciduais/química , Argila , Nanotubos/química , Cartilagem
16.
Int J Biol Macromol ; 230: 123167, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621738

RESUMO

Polyhydroxybutyrate (PHB) is a natural-source biopolymer of the polyhydroxyalkanoate (PHA) family. Nanofibrous scaffolds prepared from this biological macromolecule have piqued the interest of researchers in recent years due to their unique properties. Nonetheless, these nanofibers continue to have problems such as low surface roughness and high hydrophobicity. In this research, PHB nanofibers were produced by the electrospinning method. Following that, the surface of nanofibers was modified by atmospheric plasma. Scanning electron microscopy (SEM), water contact angle (WCA), atomic force microscopy (AFM), tensile test, and cell behavior analyses were performed on mats to investigate the performance of treated and untreated samples. The achieved results showed a lower water contact angle (from ≃120° to 43°), appropriate degradation rate (up to ≃20 % weight loss in four months), and outstanding biomineralization (Ca/P ratio of ≃1.86) for the modified sample compared to the neat PHB. Finally, not only the MTT test show better viability of MG63 osteoblast cells, but also Alizarin staining, ALP, and SEM results likewise showed better cell proliferation in the presence of modified mats. These findings back up the claim that plasma surface modification is a quick, environmentally friendly, and low-cost way to improve the performance of nanofibers in bone tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais , Água , Poliésteres/farmacologia , Proliferação de Células
17.
Int J Biol Macromol ; 223(Pt A): 524-542, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36356869

RESUMO

Blend nanofibers composed of synthetic and natural polymers with carbon nanomaterial, have a great potential for bone tissue engineering. In this study, the electrospun nanocomposite scaffolds based on polyhydroxybutyrate(PHB)-Starch-multiwalled carbon nanotubes (MWCNTs) were fabricated with different concentrations of MWCNTs including 0.5, 0.75 and 1 wt%. The synthesized scaffolds were characterized in terms of morphology, porosity, thermal and mechanical properties, biodegradation, bioactivity, and cell behavior. The effect of the developed structures on MG63 cells was determined by real-time PCR quantification of collagen type I, osteocalcin, osteopontin and osteonectin genes. Our results showed that the scaffold containing 1 wt% MWCNTs presented the lowest fiber diameter (124 ± 44 nm) with a porosity percentage above 80 % and the highest tensile strength (24.37 ± 0.22 MPa). The addition of MWCNTs has a positive effect on surface roughness and hydrophilicity. The formation of calcium phosphate sediments on the surface of the scaffolds after immersion in SBF is observed by SEM and verified by EDS and XRD analysis.MG63 cells were well cultured on the scaffold containing MWCNTs and presented more cell viability, ALP secretion, calcium deposition and gene expression compared to the scaffolds without MWCNTs. The PHB-starch-1wt.%MWCNTs scaffold can be considerable for studies of supplemental bone tissue engineering applications.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Engenharia Tecidual/métodos , Nanotubos de Carbono/química , Alicerces Teciduais/química , Amido , Poliésteres/química
18.
Int J Biol Macromol ; 220: 1402-1414, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116594

RESUMO

The choice of materials and preparation methods are the most important factors affecting the final characteristics of the scaffolds. In this study, cellulose nanofibers (CNFs) as a nano-additive reinforcer were selected to prepare a polyhydroxybutyrate (PHB) based nanocomposite mat. The PHB/CNF (PC) scaffold properties, created via the electrospinning method, were investigated and compared with pure PHB. The obtained results, in addition to a slight increment of crystallinity (from ≃46 to 53 %), showed better water contact angle (from ≃120 to 96°), appropriate degradation rate (up to ≃25 % weight loss in two months), prominent biomineralization (Ca/P ratio about 1.50), and ≃89 % increment in toughness factor of PC compare to the neat PHB. Moreover, the surface roughness as an affecting parameter on cell behavior was also increased up to ≃43 % in the presence of CNFs. Eventually, not only the MTT assay revealed better human osteoblast MG63 cell viability on PC samples, but also DAPI staining and SEM results confirmed the more plausible cell spreading in the presence of cellulose nano-additive. These improvements, along with the appropriate results of ALP and Alizarin red, authenticate that the newly PC nanocomposite composition has the required efficiency in the field of bone tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Celulose , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais , Água
19.
Int J Biol Macromol ; 220: 1368-1389, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116596

RESUMO

The role of scaffolds in bone regeneration is of great importance. Here, the electrospun scaffolds of poly (3-hydroxybutyrate)-keratin (PHB-K)/nanohydroxyapatite (nHA) with different morphologies (long nanorods (HAR) and very short nanorods (HAP)) and weight percentages (up to 10 w/w%) of nHA were fabricated and characterized. The fibers integrity, the porosity of above 80%, and increase in pore size up to 16 µm were observed by adding nHA. The nanofibers crystallinity increased by 13.5 and 22.8% after the addition of HAR and HAP, respectively. The scaffolds contact angle decreased by almost 20° and 40° after adding 2.5 w/w% HAR and HAP, respectively. The tensile strength of the scaffolds increased from 2.99 ± 0.3 MPa for PHB-K to 6.44 ± 0.16 and 9.27 ± 0.04 MPa for the scaffolds containing 2.5 w/w% HAR and HAP, respectively. After immersing the scaffolds into simulated body fluid (SBF), the Ca concentration decreased by 55% for HAR- and 73% for HAP-containing scaffolds, showing the bioactivity of nHA-containing scaffolds. The results of cell attachment, proliferation, and viability of MG-63 cells cultured on the nanocomposites showed the positive effects of nHA. The results indicate that the nanocomposite scaffolds, especially HAP-containing ones, can be suitable for bone tissue engineering applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Ácido 3-Hidroxibutírico , Durapatita , Queratinas , Poliésteres/farmacologia , Engenharia Tecidual/métodos
20.
Int J Biol Macromol ; 218: 317-334, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35882262

RESUMO

The tissue engineering scaffolds requires efficient combination of materials, appropriate method of preparation, and precise characterization of final product. In this study, the optimal electrospinning process conditions of polyhydroxybutyrate (PHB) were investigated by Taguchi design. Then, the initial PHB solution characteristics in the presence of lignin were optimized and then electro-spun. In this regard, the uniformity of electro-spun nanofibers, observed by SEM, confirmed that 9 w/v % is the optimum concentration of PHB in Trifluoro acetic acid. Addition of 6 wt% of lignin to PHB, could alleviate both the brittleness and hydrophobicity of PHB, as DSC, XRD, and WCA results indicated decrement in crystallinity (from 46 to 39 %), crystal size (from 21.8 to 15.2 nm), and WCA (from 118 to 73°). On the other hand, FESEM results represented diameter reduction from 1318 ± 202.07 to 442 ± 111.04 nm, and transformation of nanofiber physical structure from ribbon-like to cylindrical fiber by adding lignin. In addition, the mechanical properties of PHB including elongation at break, toughness, young modulus, and tensile strength were also improved (up to twice) by adding lignin. Ultimately, reviewing the outputs of degradation, bioactivity, MG63 cell viability, proliferation, mineralization, and antioxidant activity confirm that PHB/lignin electrospun scaffold has potential application in tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Hidroxibutiratos/química , Lignina , Nanofibras/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...