Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1413-1421, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665653

RESUMO

Electrochemical reduction of carbon dioxide (CO2) is a promising route to up-convert this industrial byproduct. However, to perform this reaction with a small-molecule catalyst, the catalyst must be proximal to an electrode surface. Efforts to immobilize molecular catalysts on electrodes have been stymied by the need to optimize the immobilization chemistries on a case-by-case basis. Taking inspiration from nature, we applied DNA as a molecular-scale "Velcro" to investigate the tethering of three porphyrin-based catalysts to electrodes. This tethering strategy improved both the stability of the catalysts and their Faradaic efficiencies (FEs). DNA-catalyst conjugates were immobilized on screen-printed carbon and carbon paper electrodes via DNA hybridization with nearly 100% efficiency. Following immobilization, a higher catalyst stability at relevant potentials is observed. Additionally, lower overpotentials are required for the generation of carbon monoxide (CO). Finally, high FE for CO generation was observed with the DNA-immobilized catalysts as compared to the unmodified small-molecule systems, as high as 79.1% FE for CO at -0.95 V vs SHE using a DNA-tethered catalyst. This work demonstrates the potential of DNA "Velcro" as a powerful strategy for catalyst immobilization. Here, we demonstrated improved catalytic characteristics of molecular catalysts for CO2 valorization, but this strategy is anticipated to be generalizable to any reaction that proceeds in aqueous solutions.

2.
Proc Natl Acad Sci U S A ; 121(13): e2320410121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498718

RESUMO

Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sulfatos/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Biofilmes , Proteínas de Transporte/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045380

RESUMO

Biofilms of the sulfate reducing bacterium (SRB) Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses; however, the mechanisms of biofilm formation by DvH are not yet well-understood. Evidence suggests that a large adhesin, DvhA, may be contributing to biofilm formation in DvH. The dvhA gene and its neighbors encode proteins that resemble the Lap system, which regulates biofilm formation by Pseudomonas fluorescens, including a LapG-like protease DvhG and effector protein DvhD, which has key differences from the previously described LapD. By expressing the Lap-like adhesion components of DvH in P. fluorescens, our data support the model that the N-terminal fragment of the large adhesin DvhA serves as an adhesin "retention module" and is the target of the DvhG/DvhD regulatory module, thereby controlling cell-surface location of the adhesin. By heterologously expressing the DvhG/DvhD-like proteins in a P. fluorescens background lacking native regulation (ΔlapGΔlapD) we also show that cell surface regulation of the adhesin is dependent upon the intracellular levels of c-di-GMP. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.

4.
ACS Cent Sci ; 7(10): 1718-1727, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34729415

RESUMO

Organophosphate (OP) pesticides cause hundreds of illnesses and deaths annually. Unfortunately, exposures are often detected by monitoring degradation products in blood and urine, with few effective methods for detection and remediation at the point of dispersal. We have developed an innovative strategy to remediate these compounds: an engineered microbial technology for the targeted detection and destruction of OP pesticides. This system is based upon microbial electrochemistry using two engineered strains. The strains are combined such that the first microbe (E. coli) degrades the pesticide, while the second (S. oneidensis) generates current in response to the degradation product without requiring external electrochemical stimulus or labels. This cellular technology is unique in that the E. coli serves only as an inert scaffold for enzymes to degrade OPs, circumventing a fundamental requirement of coculture design: maintaining the viability of two microbial strains simultaneously. With this platform, we can detect OP degradation products at submicromolar levels, outperforming reported colorimetric and fluorescence sensors. Importantly, this approach affords a modular, adaptable strategy that can be expanded to additional environmental contaminants.

5.
ACS Infect Dis ; 6(7): 1567-1571, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32646219

RESUMO

Bacterial infections are urgent threats to human health, especially in light of rising rates of antibiotic resistance, and their ubiquity demands the development of efficient diagnostic platforms. Electrochemical biosensors for point-of-care testing are garnering interest due to their speed, sensitivity, and selectivity as well as their inexpensive, user-friendly operation. These biosensors have the potential to make significant commercial and clinical impacts. In this Viewpoint, we discuss recent advances in the electrochemical detection of pathogenic bacteria using both direct and alternating current. We focus on platforms that detect whole microbes, as these sensors are specific, fast, and easy to operate.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Doenças Transmissíveis , Bactérias/genética , Infecções Bacterianas/diagnóstico , Doenças Transmissíveis/diagnóstico , Humanos
6.
Curr Opin Chem Biol ; 47: 7-17, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30015234

RESUMO

Microorganisms can acquire energy from the environment by extending their electron transport chains to external solid electron donors or acceptors. This process, known as extracellular electron transfer (EET), is now being heavily pursued for wiring microbes to electrodes in bioelectrochemical renewable energy technologies. Recent studies highlight the crucial role of multi-heme cytochromes in facilitating biotic-abiotic EET both for cellular electron export and uptake. Here we explore progress in understanding the range and function of these biological electron conduits in the context of fuel-to-electricity and electricity-to-bioproduct conversion. We also highlight emerging topics, including the role of multi-heme cytochromes in inter-species electron transfer and in inspiring the design and synthesis of a new generation of protein-based bioelectronic components.


Assuntos
Citocromos/metabolismo , Geobacter/metabolismo , Heme/metabolismo , Shewanella/metabolismo , Citocromos/química , Transporte de Elétrons , Geobacter/química , Heme/química , Modelos Moleculares , Shewanella/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...