Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 3(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25921777

RESUMO

Endothelial progenitor cells (EPCs) are bone-marrow-derived mononuclear cells that participate in tube formation in vitro and vessel formation in vivo. EPC transplantation, as a therapeutic approach in cardiovascular diseases, has produced mixed results likely due to underlying disease states and environmental factors affecting EPC function. In this study, we investigated the mechanisms by which a high-salt diet impairs EPC function. The number of endothelial progenitor cells (CD34(+), VEGFR2(+), CD133(+), and c-Kit(+)) was decreased in the bone marrow of Sprague-Dawley (SD) rats fed a high-salt diet (HSD; 4% NaCl) as compared to SD rats on a normal-salt diet (NSD; 0.4% NaCl). NSD EPCs augmented endothelial cell tube formation in vitro, whereas HSD EPCs did not. NSD EPCs were a potent therapeutic restoring electrical stimulation-induced angiogenesis in vivo. HSD EPCs were not able to restore angiogenesis in vivo. EPC DNA methylation was analyzed by reduced representative bisulfite sequencing and membrane proteins were analyzed using high accuracy liquid chromatography mass spectrometry. Differentially methylated genes and differentially abundant membrane proteins measured between the NSD and HSD EPCs, revealed a total of 886 gene-protein sets where reciprocal methylation and expression occurred. Based on stringent criteria, Notch4 was found to be hypermethylated in HSD EPCs and had corresponding decrease in protein expression. Suppression of Notch4 protein expression in EPCs using siRNA confirmed a role for Notch4 in EPC-mediated angiogenesis, suggesting Notch4 suppression as a mechanism by which high-salt diet inhibits EPC-mediated angiogenesis.

2.
PLoS One ; 9(4): e94599, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718615

RESUMO

OBJECTIVE: Diabetes Mellitus (DM) has reached epidemic levels globally. A contributing factor to the development of DM is high blood glucose (hyperglycemia). One complication associated with DM is a decreased angiogenesis. The Matrigel tube formation assay (TFA) is the most widely utilized in vitro assay designed to assess angiogenic factors and conditions. In spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential design and interpretation of results. This study describes the development and validation of an open source software tool for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM. APPROACH AND RESULTS: Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input (Pipeline v1.3) to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus normal glucose or 1 week of high glucose. CONCLUSIONS: Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have additional applications, such as detection of retinal vasculature.


Assuntos
Células Endoteliais/patologia , Hiperglicemia/patologia , Neovascularização Fisiológica , Algoritmos , Animais , Automação , Simulação por Computador , Microvasos/patologia , Miocárdio/patologia , Publicações , Ratos , Vasos Retinianos/patologia , Interface Usuário-Computador
3.
Am J Physiol Cell Physiol ; 306(2): C123-31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24259418

RESUMO

Autologous bone marrow-derived mononuclear cell (BM-MNC) transplantation is a potential therapy for inducing revascularization in ischemic tissues providing the underlying disease process had not negatively affected BM-MNC function. Previously, we have shown that skeletal muscle angiogenesis induced by electrical stimulation is impaired by a high-salt diet (HSD; 4% NaCl) in Sprague-Dawley (SD) rats. In this study we tested the hypothesis that BM-MNC angiogenic function is impaired by an elevated dietary sodium intake. Following 1 wk on HSD, either vehicle or BM-MNCs derived from SD donor rats on HSD or normal salt diet (NSD; 0.4% NaCl) were injected into male SD rats undergoing hindlimb stimulation. Administration of BM-MNCs (intramuscular or intravenous) from NSD donors, but not HSD donors, restored the angiogenic response in HSD recipients. Angiotensin II (3 ng · kg(-1) · min(-1)) infusion of HSD donor rats restored angiogenic capacity of BM-MNCs, and treatment of NSD donor rats with losartan, an angiotensin II receptor-1 antagonist, inhibited BM-MNC angiogenic competency. HSD BM-MNCs and NSD losartan BM-MNCs exhibited increased apoptosis in vitro following an acute 6-h hypoxic stimulus. HSD BM-MNCs also had increased apoptosis following injection into skeletal muscle. This study suggests that BM-MNC transplantation can restore skeletal muscle angiogenesis and that HSD impairs the angiogenic competency of BM-MNCs due to suppression of the renin-angiotensin system causing increased apoptosis.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Neovascularização Fisiológica/fisiologia , Cloreto de Sódio na Dieta/toxicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Estimulação Elétrica/métodos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta/administração & dosagem
4.
Physiol Genomics ; 45(21): 999-1011, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24022221

RESUMO

Endothelial progenitor cells (EPCs) promote angiogenesis, and clinical trials suggest autologous EPC-based therapy may be effective in treatment of vascular diseases. Albeit promising, variability in the efficacy of EPCs associated with underlying disease states has hindered the realization of EPC-based therapy. Here we first identify and characterize EPC dysfunction in a rodent model of vascular disease (SS/Mcwi rat) that exhibits impaired angiogenesis. To identify molecular candidates that mediate the angiogenic potential of these cells, we performed a broad analysis of cell surface protein expression using chemical labeling combined with mass spectrometry. Analysis revealed EPCs derived from SS/Mcwi rats express significantly more type 2 low-affinity immunoglobulin Fc-gamma (FCGR2) and natural killer 2B4 (CD244) receptors compared with controls. Genome-wide sequencing (RNA-seq) and qt-PCR confirmed isoforms of CD244 and FCGR2a transcripts were increased in SS/Mcwi EPCs. EPCs with elevated expression of FCGR2a and CD244 receptors are predicted to increase the probability of SS/Mcwi EPCs being targeted for death, providing a mechanistic explanation for their reduced angiogenic efficacy in vivo. Pathway analysis supported this contention, as "key" molecules annotated to cell death paths were differentially expressed in the SS/Mcwi EPCs. We speculate that screening and neutralization of cell surface proteins that "tag" and impair EPC function may provide an alternative approach to utilizing incompetent EPCs in greater numbers, as circulating EPCs are depleted in patients with vascular disease. Overall, novel methods to identify putative targets for repair of EPCs using discovery-based technologies will likely provide a major advance in the field of regenerative medicine.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/fisiologia , Proteoma/metabolismo , Células-Tronco/metabolismo , Doenças Vasculares/fisiopatologia , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Células Cultivadas , Estimulação Elétrica , Células Endoteliais/citologia , Células Endoteliais/transplante , Citometria de Fluxo , Humanos , Espectrometria de Massas , Proteínas de Membrana/genética , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/genética , Proteoma/genética , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Transcriptoma/genética , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Physiol Genomics ; 44(19): 925-33, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22851760

RESUMO

Bone marrow mononuclear cells (BMMNCs) increase capillary density and reduce fibrosis in rodents after myocardial infarction, resulting in an overall improvement in left ventricular function. Little is known about the effectiveness of BMMNC therapy in hypertensive heart disease. In the current study, we show that delivery of BMMNCs from hypertension protected SS-13(BN)/MCWi donor rats, but not BMMNC from hypertension susceptible SS/MCWi donor rats, resulted in 57.2 and 83.4% reductions in perivascular and interstitial fibrosis, respectively, as well as a 60% increase in capillary-to-myocyte count in the left ventricles (LV) of hypertensive SS/MCWi recipients. These histological changes were associated with improvements in LV compliance and relaxation (103 and 46.4% improvements, respectively). Furthermore, improved diastolic function in hypertensive SS/MCWi rats receiving SS-13(BN)/MCWi derived BMMNCs was associated with lower clinical indicators of heart failure, including reductions in end diastolic pressure (65%) and serum brain natriuretic peptide levels (49.9%) with no improvements observed in rats receiving SS/MCWi BMMNCs. SS/MCWi rats had a lower percentage of endothelial progenitor cells in their bone marrow relative to SS-13(BN)/MCWi rats. These results suggest that administration of BMMNCs can prevent or reverse pathological remodeling in hypertensive heart disease, which contributes to ameliorating diastolic dysfunction and associated symptomology. Furthermore, the health and hypertension susceptibility of the BMMNC donor are important factors influencing therapeutic efficacy, possibly via differences in the cellular composition of bone marrow.


Assuntos
Transplante de Medula Óssea/métodos , Diástole/fisiologia , Cardiopatias/patologia , Cardiopatias/terapia , Leucócitos Mononucleares/transplante , Remodelação Ventricular/fisiologia , Análise de Variância , Animais , Pressão Sanguínea , Vasos Coronários/fisiologia , Ecocardiografia , Fibrose , Imuno-Histoquímica , Masculino , Peptídeo Natriurético Encefálico/sangue , Reação em Cadeia da Polimerase , Pontos Quânticos , Ratos , Ratos Endogâmicos Dahl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...