Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 39(7): 677-688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38508922

RESUMO

Although primarily studied through the lens of community ecology, phenomena consistent with priority effects appear to be widespread across many different scenarios spanning a broad range of spatial, temporal, and biological scales. However, communication between these research fields is inconsistent and has resulted in a fragmented co-citation landscape, likely due to the diversity of terms used to refer to priority effects across these fields. We review these related terms, and the biological contexts in which they are used, to facilitate greater cross-disciplinary cohesion in research on priority effects. In breaking down these semantic barriers, we aim to provide a framework to better understand the conditions and mechanisms of priority effects, and their consequences across spatial and temporal scales.


Assuntos
Ecologia , Ecologia/métodos , Biologia
2.
J Environ Qual ; 41(4): 1221-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751065

RESUMO

Stored poultry manure can be a significant source of ammonia (NH) and greenhouse gases (GHGs), including nitrous oxide (NO), methane (CH), and carbon dioxide (CO) emissions. Amendments can be used to modify physiochemical properties of manure, thus having the potential to reduce gas emissions. Here, we lab-tested the single and combined effects of addition of reed straw, zeolite, and superphosphate on gas emissions from stored duck manure. We showed that, over a period of 46 d, cumulative NH emissions were reduced by 61 to 70% with superphosphate additions, whereas cumulative NO emissions were increased by up to 23% compared with the control treatment. Reed straw addition reduced cumulative NH, NO, and CH emissions relative to the control by 12, 27, and 47%, respectively, and zeolite addition reduced cumulative NH and NO emissions by 36 and 20%, respectively. Total GHG emissions (as CO-equivalents) were reduced by up to 27% with the additions of reed straw and/or zeolite. Our results indicate that reed straw or zeolite can be recommended as amendments to reduce GHG emissions from duck manure; however, superphosphate is more effective in reducing NH emissions.


Assuntos
Amônia/química , Difosfatos/química , Patos , Efeito Estufa , Esterco/análise , Zeolitas/química , Animais , Dióxido de Carbono/química , Metano/química , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...