Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430658

RESUMO

The transcytosis of lipids through enterocytes occurs through the delivery of lipid micelles to the microvilli of enterocytes, consumption of lipid derivates by the apical plasma membrane (PM) and then their delivery to the membrane of the smooth ER attached to the basolateral PM. The SER forms immature chylomicrons (iChMs) in the ER lumen. iChMs are delivered at the Golgi complex (GC) where they are subjected to additional glycosylation resulting in maturation of iChMs. ChMs are secreted into the intercellular space and delivered into the lumen of lymphatic capillaries (LCs). The overloading of enterocytes with lipids induces the formation of lipid droplets inside the lipid bilayer of the ER membranes and transcytosis becomes slower. Here, we examined components of the enterocyte-to-lymphatic barriers in newly born rats before the first feeding and after it. In contrast to adult animals, enterocytes of newborns rats exhibited apical endocytosis and a well-developed subapical endosomal tubular network. These enterocytes uptake membranes from amniotic fluid. Then these membranes are transported across the polarized GC and secreted into the intercellular space. The enterocytes did not contain COPII-coated buds on the granular ER. The endothelium of blood capillaries situated near the enterocytes contained only a few fenestrae. The LCs were similar to those in adult animals. The first feeding induced specific alterations of enterocytes, which were similar to those observed after the lipid overloading of enterocytes in adult rats. Enlarged chylomicrons were stopped at the level of the LAMP2 and Neu1 positive post-Golgi structures, secreted, fused, delivered to the interstitial space, captured by the LCs and transported to the lymph node, inducing the movement of macrophages from lymphatic follicles into its sinuses. The macrophages captured the ChMs, preventing their delivery into the blood.


Assuntos
Quilomícrons , Enterócitos , Ratos , Animais , Enterócitos/metabolismo , Animais Recém-Nascidos , Quilomícrons/metabolismo , Transporte Biológico , Microvilosidades/metabolismo
2.
Tissue Cell ; 72: 101529, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33915359

RESUMO

Although the general structure of the barrier between the gut and the blood is well known, many details are still missing. Here, we analyse the literature and our own data related to lipid transcytosis through adult mammalian enterocytes, and their absorption into lymph at the tissue level of the intestine. After starvation, the Golgi complex (GC) of enterocytes is in a resting state. The addition of lipids in the form of chyme leads to the initial appearance of pre-chylomicrons (ChMs) in the tubules of the smooth endoplasmic reticulum, which are attached at the basolateral plasma membrane, immediately below the 'belt' of the adhesive junctions. Then pre-ChMs move into the cisternae of the rough endoplasmic reticulum and then into the expansion of the perforated Golgi cisternae. Next, they pass through the GC, and are concentrated in the distensions of the perforated cisternae on the trans-side of the GC. The arrival of pre-ChMs at the GC leads to the transition of the GC to a state of active transport, with formation of intercisternal connections, attachment of cis-most and trans-most perforated cisternae to the medial Golgi cisternae, and disappearance of COPI vesicles. Post-Golgi carriers then deliver ChMs to the basolateral plasma membrane, fuse with it, and secret ChMs into the intercellular space between enterocytes at the level of their interdigitating contacts. Finally, ChMs are squeezed out into the interstitium through pores in the basal membrane, most likely due to the function of the actin-myosin 'cuff' around the interdigitating contacts. These pores appear to be formed by protrusions of the dendritic cells and the enterocytes per se. ChMs are absorbed from the interstitium into the lymphatic capillaries through the special oblique contacts between endothelial cells, which function as valves through the contraction-relaxation of bundles of smooth muscle cells in the interstitium. Lipid overloading of enterocytes results in accumulation of cytoplasmic lipid droplets, an increase in diameter of ChMs, inhibition of intra-Golgi transport, and fusion of ChMs in the interstitium. Here, we summarise and analyse recent findings, and discuss their functional implications.


Assuntos
Trato Gastrointestinal/metabolismo , Lipídeos/química , Linfa/metabolismo , Animais , Transporte Biológico , Enterócitos/metabolismo , Enterócitos/ultraestrutura , Humanos , Microvilosidades/metabolismo , Frações Subcelulares/metabolismo
3.
Histochem Cell Biol ; 153(6): 413-429, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32162136

RESUMO

In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical the cis-most and the trans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into the cis-most cisterna and were concentrated in cisternal distensions at the trans-side of the Golgi complex. This induced attachment of the cis-most and the trans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of the cis-most and the trans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view. In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical the cis-most and the trans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into the cis-most cisterna and were concentrated in cisternal distensions at the trans-side of the Golgi complex. This induced attachment of the cis-most and the trans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of the cis-most and the trans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view.


Assuntos
Enterócitos/citologia , Enterócitos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Transcitose , Animais , Enterócitos/química , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Ratos Wistar
4.
Front Biosci (Landmark Ed) ; 25(7): 1230-1258, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114431

RESUMO

There is a great progress in understanding the cellular and molecular aspects of atherosclerosis, which is one of the leading causes of death. Yet, there are questions regarding the cellular and metabolic mechanisms that lead to atherogenesis. Among the many factors that influence this process, food plays a significant role. Among other factors that play a paramount role in atherogensis are alterations of the transport of food in enterocytes, oxysterols, development of an atherogenic serum, endothelial damage, accumulation of foam cells within the vessel wall, lysosome-ER transport, and hypertension. Here, we discuss the contribution of secretion, transcytosis, endocytosis of chylomicrons, low-density lipoproteins (LDL), very LDL, and high-density lipoproteins to atherogenesis.


Assuntos
Aterosclerose/metabolismo , Dieta Aterogênica , Enterócitos/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Oxisteróis/metabolismo , Animais , Endocitose , Retículo Endoplasmático/metabolismo , Humanos , Hipertensão/metabolismo , Espaço Intracelular/metabolismo , Lisossomos/metabolismo , Transcitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...